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Two influential approaches to modeling choice between risky options are algebraic models
(which focus on predicting the overt decisions) and models of heuristics (which are also
concerned with capturing the underlying cognitive process). Because they rest on funda-
mentally different assumptions and algorithms, the two approaches are usually treated
as antithetical, or even incommensurable. Drawing on cumulative prospect theory (CPT;
Tversky & Kahneman, 1992) as the currently most influential instance of a descriptive alge-
braic model, we demonstrate how the two modeling traditions can be linked. CPT’s alge-
braic functions characterize choices in terms of psychophysical (diminishing sensitivity
to probabilities and outcomes) as well as psychological (risk aversion and loss aversion)
constructs. Models of heuristics characterize choices as rooted in simple information-
processing principles such as lexicographic and limited search. In computer simulations,
we estimated CPT’s parameters for choices produced by various heuristics. The resulting
CPT parameter profiles portray each of the choice-generating heuristics in psychologically
meaningful ways—capturing, for instance, differences in how the heuristics process
probability information. Furthermore, CPT parameters can reflect a key property of many
heuristics, lexicographic search, and track the environment-dependent behavior of
heuristics. Finally, we show, both in an empirical and a model recovery study, how CPT
parameter profiles can be used to detect the operation of heuristics. We also address the
limits of CPT’s ability to capture choices produced by heuristics. Our results highlight an
untapped potential of CPT as a measurement tool to characterize the information
processing underlying risky choice.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

When in 2002 the Royal Swedish Academy of Sciences awarded Daniel Kahneman the Nobel Prize for Economic Sciences,
it lauded two pillars of his joint work with Amos Tversky: prospect theory and the heuristics-and-biases program. Both lines
of research investigate how human judgment and decision making systematically deviate from standard assumptions of
rationality in economics. Yet there is also a fascinating disconnect between the two lines of research. Kahneman pointed
out that when developing prospect theory, their approach ‘‘was as conservative as possible. [. . .] The goal [. . .] was to assem-
ble the minimal set of modifications of expected utility theory that would provide a descriptive account of [. . .] choices
between simple monetary gambles” (Kahneman & Tversky, 2000, p. x). The theoretical thrust of the heuristics-and-biases
any.
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program, in contrast, was anything but conservative; in fact, it ‘‘revolutionized academic research on human judgment”
(Gilovich & Griffin, 2002, p. 1). It did so by proposing that people’s judgments under uncertainty do not involve extensive
operations, but rest on simple mental processes—heuristic in nature—that curtail information search.

The disconnect between Kahneman and Tversky’s prospect theory and their work on heuristics (e.g., Tversky &
Kahneman, 1974) echoes a more general trend in research on risk choice, namely the separation between algebraic models
and models focused on the actual processes underlying choice (cf. Lopes, 1995). Algebraic models—with prospect theory and
its extension, cumulative prospect theory (CPT; Tversky & Kahneman, 1992), being the most prominent instances—focus on
the algebraic patterns of people’s risk preferences and thus on people’s ultimate choices but not on how the choices come
about. They describe choices in terms of a multiplicative integration of (some function of) probabilities and outcomes, fol-
lowed by maximization, and are rooted in the concept of mathematical expectation and its application to risky choice, first in
terms of expected value theory and then in the early incarnation of expected utility theory (Bernoulli, 1738/1954). Like other
algebraic models of risky choice (Birnbaum & Chavez, 1997; Lopes & Oden, 1999), CPT assumes that the evaluation of a risky
option can be derived by combining mathematical expectation with a few psychological constructs (e.g., risk aversion, loss
aversion, probability weighting), all of which are represented by parameterized functions.

The other approach to modeling risky choice takes Edwards’ (1953) question as its starting point: ‘‘[H]ow do people actu-
ally go about making decisions in gambling situations?” (p. 351). Informed by findings from process analyses (e.g.,
Lichtenstein, 1965; Payne & Braunstein, 1978) and acknowledging cognition’s natural bounds of information and computa-
tional capacities (Simon, 1955), models of the choice process have often taken the form of heuristics. Unlike algebraic mod-
els, models of heuristics focus on the content (rather than just the result) of choice processes and are explicated in terms of
the cognitive operations underlying a decision, such as search, stopping, and integration of information (Gigerenzer, Hertwig,
& Pachur, 2011; Payne, Bettman, & Johnson, 1993). Being based on simple principles of information processing, models of
heuristics typically forego the integration of probabilities and outcomes and ignore part of the available information (e.g.,
Payne et al., 1993; Thorngate, 1980; for an overview, see Pleskac, Diederich, & Wallsten, 2015). Models of heuristics for risky
choice include the semiorder rule (Luce, 1956), elimination-by-aspects (Tversky, 1969, 1972), the minimax and maximax
heuristics (e.g., Coombs, Dawes, & Tversky, 1970), the Pwin heuristic (Payne, 2005), the least-likely and the most-likely
heuristics (Thorngate, 1980), the similarity heuristic (Leland, 1998; Rubinstein, 1988), and the priority heuristic
(Brandstätter, Gigerenzer, & Hertwig, 2006). Although some of these models of heuristics have been formalized mathemat-
ically (e.g., Katsikopoulos & Gigerenzer, 2008; Tversky, 1972), we do not classify them as algebraic models here, thus follow-
ing Lopes (1995). We refer to algebraic models as those that focus on predicting people’s overt choices (regardless of the
psychological plausibility of the implied process), whereas models of heuristics also aim to specify how information is
searched and when search is stopped.1

The two modeling approaches to risky choice exist side by side with little theoretical integration, and they have often
been treated as antithetical (e.g., Brandstätter et al., 2006; Payne, 1973; Svenson, 1979). Lopes (1995, p. 177) described this
separation thus: ‘‘Although one might suppose that [algebraic and process] accounts are alternate ways of describing the
same thing—indeed, that one kind of model might eventually be reducible to the other—the approaches have tended to
be disjoint.” The goal of this article is to investigate to what extent algebraic models and models of heuristics represent alter-
native ways of describing the same thing—or, at least, related things. We argue that CPT’s constructs—such as diminished
sensitivity to outcome or probability information, risk aversion, and loss aversion, measured through parameters that govern
the shape of CPT’s value and weighting functions (see below)—offer a useful framework for characterizing heuristic process-
ing principles. Specifically, we demonstrate how differences in CPT parameters can index the use of different heuristic
processes.

To avoid misunderstandings, let us clarify two issues right away. First, our goal is not to render one approach reducible to
another (a possibility suggested in the quote from Lopes, 1995). Rather, we aim to work out how two possible but disjointed
ways to describing risky choice could be brought together. We thus join forces with others who have contributed to over-
come the fragmented state of psychological theory (see Dougherty, Gettys, & Ogden, 1999; Johnson & Meyer, 1984; Juslin,
Olsson, & Olsson, 2003; Luan, Schooler, & Gigerenzer, 2011; Pleskac, 2007; Schooler & Hertwig, 2005). In a similar vein,
Stewart, Chater, and Brown (2006) have demonstrated how the characteristic shapes of CPT’s value and weighting functions
can arise from an interaction of simple cognitive comparison processes and particular structures of the environment, namely,
the distribution of how frequently gains and losses of different magnitudes occur in the ecology. We complement this work
by investigating how CPT’s shapes may arise from specific characteristics in the processing principles of heuristics, but with-
out making particular assumptions about the choice ecology. Second, for the purpose of our analysis, we consider the models
of heuristics investigated here as stylized descriptions of simple processing principles that may operate to varying degrees,
depending on the decision context and the decision maker. We do not claim that any one of them offers a comprehensive and
veridical account of risky choice (we turn to empirical tests of models of heuristics in the General Discussion).

In what follows, we review previous work connecting algebraic and heuristic models of decision making, and describe
CPT’s parametric framework as well as several heuristics for risky choice proposed in the literature. We then discuss how
choices generated by several heuristics assuming substantially different processes may be reflected in the parameters of
1 Some of the models of heuristic investigated in our analyses, such as the minimax heuristic, were not originally proposed as process models (Savage,
1954/1972). However, for all models of heuristics, it is straightforward to derive predictions of how information is searched, when search is stopped, and how
the choice is made based on the information—our key criteria for whether a model constitutes a process model.
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CPT and test these predictions using computer simulations. Subsequently, we demonstrate how CPT reflects choices of a
specific lexicographic strategy that adapts its information search depending on the structure of the choice problems, and that
CPT can track how the behavior of a heuristic interacts with the structure of the environment. Finally, we examine, using a
model recovery study, how well heuristics and CPT can be told apart under conditions of noise; and we demonstrate, both in
an empirical study and another model recovery study, how the specific CPT parameter profiles of the individual heuristics
can be used to infer the operation of the heuristics.

1.1. Algebraic models as measurement tools to reflect information processing

Others have previously explored the possibility that algebraic models can be used, by way of their adjustable parameters,
as psychometric (i.e., measurement) tools to describe heuristic information processing. For instance, Johnson and Meyer
(1984) investigated people’s decisions in various multi-attribute choice sets that differed in the number of attributes per
option. As the number of attributes per option increased, sequential, noncompensatory elimination strategies (as identified
on the basis of verbal protocol analyses and process tracing) became more prevalent. The authors then fitted logit models
(which are based on a compensatory algorithm) to the decisions, and showed that the shift toward noncompensatory strate-
gies was captured in the model parameters by a more polarized distribution of attribute weights. Relatedly, Bhatia (2015)
showed how various heuristics for multi-attribute choice (e.g., lexicographic, tallying) can be represented in multi-
parameter accumulator models. Another example is the use of structural modeling analyses in social judgment theory
(e.g., Cooksey, 1996; Hammond, Hursch, & Todd, 1964). Here, researchers use multiple regression to measure the influence
of cues on a person’s judgment and, by extension, her judgment ‘‘policy,” also permitting that policy to be a noncompen-
satory heuristic (Gigerenzer & Kurz, 2001).

In our work, we examine the relationship between algebraic models (using CPT as a paradigmatic case) and heuristic
choice rules in the context of risky choice, a domain in which the potential of algebraic models as measurement tools for
heuristic information processes has barely been examined.

1.2. The algebra of risky choice: cumulative prospect theory

CPT assumes that choices between risky options, each having outcomes xm > . . . > x1 P 0 > y1 > . . . > yn and corresponding
probabilities pm . . . p1 and q1 . . . qn, are based on a person’s subjective valuation of these options, followed by maximization.
In CPT, the overall valuation V of an option A is defined as
VðAÞ ¼
Xm

i¼1

vðxiÞpþ
i þ

Xn

j¼1

vðyjÞp�
j : ð1Þ
The subjective value, v, of an outcome is determined by the value function:
vðxÞ ¼ xa
þ
;

vðyÞ ¼ �kð�yÞa� ð2Þ
where a+ and a– reflect the sensitivity to differences in positive (gains) and negative (losses) outcomes, respectively. Both
parameters are assumed to lie in the interval between 0 and 1, yielding a concave and convex value function for gains
and losses, respectively. The more concave (convex) the value function, the less sensitive choices are to differences in out-
comes. The parameter k in Eq. (2) indicates the relative weight of gains and losses. It is assumed that a loss of a certain mag-
nitude has a greater psychological impact on a choice than does a gain of the same magnitude. This loss aversion occurs if
k > 1, leading to a steeper value function for losses than for gains.

Further, CPT assumes a rank-dependent transformation of the outcomes’ probabilities into decision weights. More
specifically, the weight p+ (p�) given to a positive (negative) outcome is the difference between the probability of
receiving an outcome at least as good (bad) as x (y) and the probability of receiving an outcome better (worse) than
x (y):
pþ
m ¼ wþðpmÞ

p�
n ¼ w�ðqnÞ

pþ
i ¼ wþðpi þ . . .þ pmÞ �wþðpiþ1 þ . . .þ pmÞ for 1 6 i < m

p�
j ¼ w�ðqj þ . . .þ qnÞ �w�ðqjþ1 þ . . .þ qnÞ for 1 6 j < n

ð3Þ
The probability weighting functions for gains and losses—w+ and w�, respectively—are assumed to have an inverse S-
shaped curvature, embodying the overweighting of rare events and the underweighting of common events. Several types
of weighting functions have been proposed (e.g., Lattimore, Baker, & Witte, 1992; Prelec, 1998; Tversky & Kahneman,
1992; for an overview, see Stott, 2006). We will use a two-parameter version that separates the curvature of the weighting
function from its elevation (e.g., Goldstein & Einhorn, 1987; Gonzalez & Wu, 1999):
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wþ ¼ dþpc
þ

dþpcþ þ ð1� pÞcþ
for x

w� ¼ d�pc
�

d�pc� þ ð1� pÞc� for y

ð4Þ
The parameters c+ and c� (both ranging between 0 and 1) govern the function’s curvature in the gain and loss domains,
respectively, and indicate how sensitive choices are to differences in probability (with smaller values of c < 1 reflecting lower
sensitivity). The elevation of the weighting function is controlled by the parameters d+ and d� (both > 0), respectively. As
highlighted by Gonzalez and Wu (1999), the elevation reflects the degree of risk aversion (traditionally assumed to be cap-
tured by the curvature of the value function; but see Lopes, 1987, 1995;Wakker, 2010), with a lower (higher) elevation in the
gain (loss) domain indicating higher risk aversion.

CPT can account for systematic violations of expected utility theory—such as the Allais paradox, the certainty effect, the
reflection effect, and the fourfold pattern of risk attitudes (for an overview, see Wu, Zhang, & Gonzalez, 2004). It has also
successfully been used to both describe and predict risky choice in diverse sets of monetary choice problems (e.g.,
Glöckner & Pachur, 2012; but see Birnbaum, 2004; Brandstätter et al., 2006). As process models, however, algebraic models
such as CPT are rarely invoked. Rather, they are often depicted as taking an agnostic stance with regard to the cognitive oper-
ations underlying people’s choices (Hoffman, 1960; Johnson & Ratcliff, 2014). Describing the process of choosing has, how-
ever, been a key concern for models of heuristics.2

1.3. Process models of risky choice: boundedly rational heuristics

Many descriptive models of risky choice in the expectation tradition implicitly assume ‘‘that the decision maker is capable
of evaluating all the available alternatives and examining all the states and the outcomes. In most decisions, however, this
assumption is unrealistic. [Instead] different approaches to decision theory, based on some simplification scheme, are called
for” (Coombs et al., 1970, pp. 140–141). One breakthrough in the inquiry into how people simplify choices came when Slovic
and Lichtenstein (1968) proposed that risky options could be characterized as multidimensional stimuli (see also Payne,
1973). For instance, a two-outcome gamble offering either a gain or a loss can be described on four basic dimensions (or rea-
sons): the probability of winning, the amount to be won, the probability of losing, and the amount to be lost. Breaking down
options into these components raises the possibility that not all reasons receive the same amount of attention, or indeed that
some do not even enter the choice process. Consequently, Tversky (1969, 1972), for instance, argued that people may com-
pare the options in a reason-wise fashion, inspecting the reasons sequentially and terminating the process as soon as a
choice can be made. In economics, Rubinstein (1988) proposed that when two options are similar in terms of one reason
(e.g., probability of winning), attention is shifted to other reasons (e.g., amount to be won).

A frequent feature of models of heuristics is limited search, and many heuristics are therefore noncompensatory (Einhorn,
1970). Limited search is implemented differently in two classes of heuristics. One class consists of strategies that rely on one
reason only. For instance, theminimax heuristic chooses the option whose worst outcome is better, ignoring both the options’
probabilities and the better outcomes (Savage, 1954/1972). The second class consists of lexicographic choice heuristics. They
proceed through several reasons sequentially until they encounter the first one that enables a choice to be made (Fishburn,
1974; Gigerenzer, Hertwig, & Pachur, 2011; Thorngate, 1980). With lexicographic heuristics, the number of reasons
inspected thus depends on the structure of the options (i.e., in terms of which reason the options differ, or differ enough).

Models of heuristics commonly rely on simplifying and psychologically plausible principles of information processing—
such as reason-wise, sequential, and limited search, and aspiration levels. Evidence for the operation of many of these prin-
ciples has been obtained in process-tracing analyses (e.g., Payne & Braunstein, 1978; Russo & Dosher, 1983; Su et al., 2013),
although tests of specific models of heuristics have yielded little support for them as general models of decision making
under risk (e.g., Birnbaum, 2008; Fiedler, 2010; Glöckner & Pachur, 2012; Johnson, Schulte-Mecklenbeck, & Willemsen,
2008; Stewart, Hermens, & Matthews, 2016). The degree to which heuristic processing principles are triggered seems to
depend on context factors (e.g., number of reasons and options, time pressure, affect; Pachur, Hertwig, & Wolkewitz,
2014; Payne et al., 1993) and can also vary across trials (e.g., Venkatraman, Payne, Bettman, Luce, & Huettel, 2009).

1.4. Heuristics and their alter egos in CPT

To what extent can CPT represent and decode the use of simplifying principles of information processing? CPT’s potential
to capture heuristic choices may be modest for several reasons. First, CPT and heuristics differ in both the amount of infor-
mation they consider and how they integrate it. For instance, CPT determines the valuation of each option by integrating all
outcomes, each weighted by some function of their probabilities, whereas the minimax heuristic focuses on a single reason,
namely its worst outcomes, and ignores all other outcome and probability information. Second, whereas CPT determines
re are also other approaches that focus on modeling the cognitive process leading up to a choice (including processes of search and stopping), such as
e accumulation models (e.g., Busemeyer & Townsend, 1993; see Johnson & Ratcliff, 2014, for an overview). Although some of these approaches have
ccessfully applied to risky choice (e.g., Bhatia, 2014; Glöckner & Herbold, 2011), they are not the topic of this article. These models, while permitting the
on of process predictions such as response times, often predict the same choices as expectation models.
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each option’s valuation separately and independently of other options, heuristics rely on reason-wise comparisons between
options and gauge the relative rather than absolute attractiveness of an option. Third, lexicographic heuristics assume a
sequential processing of the reasons, where the consideration of a specific reason (e.g., the probability of an outcome)
depends on another reason (e.g., the magnitude of the outcome). In CPT, in contrast, the consideration of probability infor-
mation is independent of the associated outcome. Fourth, although some of CPT’s constructs, such as probability or outcome
sensitivity, seem directly open to a processing-based interpretation—that is, the extent to which a heuristic processes an
attribute (e.g., probabilities)—such a link has not yet been directly demonstrated. Finally, CPT is not indefinitely flexible
in modeling choice patterns but has various formal and conceptual constraints: Both the value and weighting function must
be monotonic. Moreover, the value function is assumed to be concave for gains and convex for losses, cannot be steeper for
gains than for losses, and the weighting function is assumed to have an inverse S-shaped curvature. (In the General Discus-
sion, we will discuss results from an implementation of CPT that lifts some of these common constraints.) These properties of
CPT may bias which choice patterns it can accommodate and thus limit its ability to represent heuristic choices.

Notwithstanding these arguments, it has been shown that multiplicative and additive information integration can to
some extent mimic each other (e.g., Massaro & Friedman, 1990; Stewart, 2011) and that some algebraic models are suffi-
ciently flexible to capture noncompensatory choice rules (e.g., Bhatia, 2015; Johnson & Meyer, 1984). How well can CPT,
which is based on a compensatory calculus, represent the choices of noncompensatory heuristics, and how does its paramet-
ric framework characterize them? To address these questions, we examined five heuristics that embody categorically differ-
ent ways of considering probability information: minimax, maximax (Coombs et al., 1970), the priority heuristic
(Brandstätter et al., 2006), the least-likely heuristic, and the most-likely heuristic (Payne et al., 1993; Thorngate, 1980).3 Min-
imax and maximax completely ignore probabilities; the priority heuristic sometimes considers them, depending on the struc-
ture of the choice problem; the least-likely and most-likely heuristics always consider probabilities. Detailed descriptions of the
heuristics, and thus also differences in how outcomes are treated, are provided in Table 1. Note that we selected these heuristics
on purely conceptual grounds; as stated earlier, we do not claim that any of them is able to provide a comprehensive account of
choice under risk.

In the following, we derive predictions concerning how the heuristics’ different policies may translate into differences in
the curvature of CPT’s weighting function as well as in other constructs represented by CPT’s parameters, namely, outcome
sensitivity, risk aversion, and loss aversion (see Table 2 for a summary of the predictions). Note that although some of CPT’s
parameter constraints (which implement these constructs) could in principle be lifted—for instance, by also permitting an S-
shaped weighting function, a convex (concave) value function for gains (losses), and gain seeking (the opposite of loss aver-
sion)—we will, for conceptual clarity, retain the usual parameter constraints here (cf. Fox & Poldrack, 2014). This has the
additional advantage that our results are comparable with existing modeling work on CPT, which has assumed these con-
straints (e.g., Glöckner & Pachur, 2012; Nilsson, Rieskamp, & Wagenmakers, 2011; Rieskamp, 2008; Suter, Pachur, &
Hertwig, 2016). The parameter constraints limit the range of choice behavior that CPT can represent—and as such hamper
its flexibility as a measurement tool; in that sense, CPT does not represent a bias-free measurement model. The constraints,
however, embody the essence of CPT. Moreover, even with its parameter constraints, CPT is a flexible model that can accom-
modate a wide range of choice patterns. In the General Discussion, we address how CPT represents the heuristics’ choices
when parameter constraints are lifted.

1.4.1. Probability sensitivity
In CPT, the degree to which choices are sensitive to differences in probabilities is assumed to be represented by the c

parameter (Eq. (4)), with lower values indicating lower sensitivity. When CPT is fitted to choices produced by the minimax
or maximax heuristics, both of which ignore probabilities, the resulting c parameters should be lower—yielding a more
strongly curved weighting function and indicating lower probability sensitivity—than when fitted to choices produced by
the priority heuristic. Depending on the choice problem, the latter sometimes takes probabilities into account. By contrast,
the least-likely and the most-likely heuristics, both of which always attend to probabilities, should yield values of the c
parameter close to 1, reflecting high sensitivity to probabilities (for a more detailed discussion of these predictions, see
Appendix A).

1.4.2. Outcome sensitivity
In CPT, the degree to which choices are sensitive to differences in the magnitude of outcomes is represented by the a

parameter of the value function (Eq. (2)), with lower values indicating lower sensitivity. Although the five heuristics
described above were selected because they differ in the processing of probabilities, they also differ in their concern for out-
comes. A heuristic that chooses solely on the basis of outcomes (such as minimax or maximax) should display greater out-
come sensitivity than one that bases its choices on probabilities (e.g., the least-likely heuristic). Outcomes always enter the
process of the minimax, maximax, and most-likely heuristics; the priority heuristic decides based on minimum outcomes as
long as they discriminate between options (and otherwise turns to probability information); and the least-likely heuristic
never bases a choice on outcome information (although outcomes are considered in an initial step of the decision process;
3 The most-likely heuristic corresponds to the first step of the lexicographic heuristic (Payne et al., 1993). For the choice problems investigated here, both
heuristics almost always make the same predictions. We therefore report the results of the former only.



Table 1
Heuristics tested in the simulations.

Heuristic Description Consideration of
probabilities

Minimax Choose the gamble with the highest minimum outcomea Never
Maximax Choose the gamble with the highest outcomea Never
Priority

heuristic
Go through reasons in the following order: minimum gain, probability of minimum gain, and maximum gain.
Stop examination if the minimum gains differ by 1/10 (or more) of the maximum gain; otherwise, stop
examination if probabilities differ by 1/10 (or more) of the probability scale. Choose the gamble with the more
attractive gain (probability). For gambles with more than two outcomes, the search rule is identical, apart from
the addition of a fourth reason: probability of maximum gain. For loss gambles, the heuristic remains the same
except that ‘‘gains” are replaced by ‘‘losses.” For mixed gambles, the heuristic remains the same except that
‘‘gains” are replaced by ‘‘outcomes.”

Sometimes

Least-likely Identify each gamble’s worst outcome. Then choose the gamble with the lowest probability of the worst
outcomea

Always

Most-likely Identify each gamble’s most likely outcome. Then choose the gamble with the highest, most likely outcomea Always

a If the decisive reason did not discriminate, the heuristic chose randomly. Heuristics are from Thorngate (1980) and Brandstätter et al. (2006; see also
Coombs et al., 1970).

Table 2
Summary of the predictions for CPT’s constructs when accommodating heuristic choices.

Domain Heuristic

Minimax Maximax Priority heuristica Least-likely Most-likely

Decisive
reason

Gain Minimum outcome Maximum outcome Minimum outcome Probability of worst
outcome

Most likely
outcome

Loss Minimum outcome Maximum outcome Maximum outcome Probability of worst
outcome

Most likely
outcome

Mixed Minimum outcome Maximum outcome Minimum outcome Probability of worst
outcome

Most likely
outcome

Prediction Probability
sensitivity

Low sensitivity (low
c)

Low sensitivity (low
c)

Medium sensitivity
(medium c)

High sensitivity
(high c)

High sensitivity
(high c)

Risk aversion Risk averse in gains
(low d+)

Risk seeking in gains
(high d+)

Risk averse in gains (low d+) Risk averse in gains
(low d+)

�

Risk averse in losses
(high d-)

Risk seeking in
losses (low d-)

Risk seeking in losses (low
d-)

Risk averse in losses
(high d-)

�

Outcome
sensitivityb

High sensitivity
(high a)

High sensitivity
(high a)

Medium/high sensitivity
(medium/high a)

Low sensitivity
(low a)

High sensitivity,
(high a)

Loss aversionc Loss averse (high k) Gain seeking (low k) Loss averse (high k) Loss averse (high k) �
a We list the reason that receives highest priority because it is examined first.
b In the parameter estimation, a common a and c for the gain and loss domains was estimated.
c An asymmetry between losses and gains—as embodied in the notion of loss aversion—can also be represented by the elevation of the weighting function

(i.e., d– > d+); see text.
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Table 1). Therefore, to the extent that concern for outcomes is reflected in CPT’s value function, minimax, maximax, and the
most-likely heuristic should result in the highest estimates of the a parameter (indicating high outcome sensitivity), fol-
lowed by the priority heuristic; the least-likely heuristic should result in the lowest a parameter estimates (indicating
low outcome sensitivity).

1.4.3. Risk aversion
As highlighted by Lopes (1995), one factor influencing a decision maker’s risk aversion is the amount of attention given to

the worst outcomes (see also Abdellaoui, L’Haridon, & Zank, 2010; Birnbaum, 2008; Brandstätter et al., 2006; Wakker, 2001).
Accordingly, the minimax heuristic can be expected to be risk averse, because it assumes an exclusive concern with the
options’ worst outcomes (in gain and loss domains). Conversely, the maximax heuristic should be risk seeking, because it
exclusively focuses on the options’ best outcomes (Brandstätter et al., 2006; Lopes, 1990). The priority heuristic’s risk aver-
sion depends on the domain: It produces risk-averse choices in the gain domain and risk-seeking choices in the loss domain
(a pattern called the reflection effect; Kahneman & Tversky, 1979). Because the least-likely heuristic chooses the option with
the lowest probability of the worst outcome, it should be risk averse in both domains.

Predicting the most-likely heuristic’s degree of risk aversion is less straightforward. As the heuristic chooses the option
with the most attractive most likely outcome, in multi-outcome options it might consider the worst, the best, or one of the
intermediate outcomes (depending on their probability); it is therefore unclear whether the heuristic’s behavior will be risk
averse, risk seeking, or risk neutral.

Although risk attitude is often explained based on the curvature of the utility/value function, since Yaari (1987) it has
increasingly been recognized that different degrees of risk aversion can also be modeled by the elevation of a probability
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weighting function—especially when they arise from differential attention to extreme outcomes (e.g., Lopes, 1995, p. 206).
From this perspective, minimax and the least-likely heuristic might lead to low (high) values on the d parameter for gains
(losses), maximax to high (low) values of d for gains (losses), and the priority heuristic to low values of d (for gains and losses
equally).

1.4.4. Loss aversion
The degree of loss aversion in CPT is modeled by the k parameter in the value function (Eq. (2)), with k > 1. Because the

outputs of the value and weighting functions are combined multiplicatively, however, decisions reflecting a larger weight for
losses than gains can, in principle, also be modeled by a more elevated weighting function for the loss than for the gain
domain (i.e., d� > d+; Pachur & Kellen, 2013; Schmidt & Zank, 2005).4 Which factors might influence the extent to which a
heuristic leads to loss-averse choices?

One obvious candidate is the degree to which a heuristic prioritizes information about possible losses over information
about possible gains. Consider, for instance, the minimax heuristic. This heuristic predicts the ‘‘choice of such an act that the
greatest loss that can possibly accrue to it shall be as small as possible” (Savage, 1954/1972, p. 164). Other things being equal,
minimax’s concern with losses should result in stronger loss aversion than maximax, whose concern lies with gains. That is,
minimax should lead either to relatively high values of the k parameter or to a relatively large discrepancy between d� and d+

(with d� > d+). Similarly, the other heuristics concerned with losses in mixed gambles—the least-likely and priority heuris-
tics—might also lead to pronounced loss aversion. In contrast, the maximax heuristic, whose aspiration is to chase gains,
might not produce loss-averse choices but instead more loss-neutral choices. Again, predicting the most-likely heuristic’s
degree of loss aversion is less straightforward.

2. How and how well does CPT reflect heuristic processing principles?

We tested these predictions using computer simulations. This test also contributes to a validation of the—to our knowl-
edge yet untested—assumptions that the weighting and value functions reflect probability and outcome sensitivity, respec-
tively. For instance, it is currently unclear whether the functions’ curvatures are indicative of differences between choice
mechanisms in the degree to which they attend to probability and outcome information. The heuristics included in our anal-
yses tend to focus on the extreme outcomes (and their probabilities) offered by an option and to ignore less extreme out-
comes (and their probabilities). Therefore, the larger the number of outcomes an option has, the more information will
be ignored. To test the extent to which CPT’s ability to represent choices generated by heuristics depends on the number
of outcomes, we conducted the analyses separately for problem sets with two-, three-, and five-outcome gambles. Each
set consisted of a total of 180 two-option choice problems, with 60 each involving gains, losses, and gains and losses (i.e.,
mixed gambles). All problems included pairs of options with similar expected values (EVs; specifically, the ratio of the abso-
lute differences of the options’ EVs to the absolute value of the option with the smaller expected value was smaller than 1;
for an analysis with pairs of options differing widely in expected value, see Appendix B). To avoid introducing specific reg-
ularities (to which the different heuristics might respond differently), we constructed the problems randomly, in line with
the approach taken in many empirical studies (e.g., Erev, Roth, Slonim, & Barron, 2002; Glöckner & Pachur, 2012; Jarvstad,
Hahn, Rushton, & Warren, 2013; Rieskamp, 2008; Scheibehenne, Rieskamp, & González-Vallejo, 2009); further, probability
levels covered the entire range of 0 to 1, and the outcome levels were selected randomly from the range of 0 to 100 and �100
to 0 in the gain and loss domain, respectively. The construction procedure is described in more detail in Appendix C. For each
problem, we determined the option that a given heuristic would choose and then estimated the parameters of CPT’s weight-
ing and value functions for those simulated choices using a Bayesian approach (e.g., Lee &Wagenmakers, 2013; see Appendix
D for more details).

2.1. Model fit

In our implementation of CPT, we set a+ = a� because, as shown by Nilsson et al. (2011), estimating separate exponents of
the value function for gains and losses can lead to misestimates of k (see also Wakker, 2010). We also set the probability
sensitivity parameter c to be equal across gains and losses, because the heuristics under investigation treat probabilities
equally across the gain and loss domains. The elevation parameter d, by contrast, was estimated separately for gains and
losses. The reason is that, as described above, some heuristics differ starkly with regard to risk aversion, and separate ele-
vation parameters for gains and losses afford an alternative way to model loss aversion (Pachur & Kellen, 2013). Overall,
as implemented here, CPT encompasses six adjustable parameters: a and k for the value function; c, d+, and d� for the
weighting function; as well as a u parameter for the choice rule needed to derive predicted choice probabilities (see Appen-
dix D). To reflect CPT’s main assumptions, we restricted the parameter values as follows in the parameter estimation (see
Rieskamp, 2008): 0 6 a 6 1; 1 6 k 6 5; 0 6 c 6 1; 0 6 d± 6 5; 0 6 u 6 5 (for more information on the prior distributions used
in the parameter estimation, see Appendix D).
4 As described in more detail below, in the analyses we set c+ = c� and a+ = a�.



T. Pachur et al. / Cognitive Psychology 93 (2017) 44–73 51
To what extent does CPT, which embodies a compensatory, multiplicative calculus, capture choices generated by heuris-
tics that embody a noncompensatory calculus? To answer this question, we first determined posterior predictives, a com-
mon way of assessing model fit in Bayesian statistics. Posterior predictives are synthetic, model-generated data sets that
are produced by parameters values from the posterior distributions. Specifically, we determined, based on the posterior dis-
tributions of the CPT parameters, the proportion of times the choice predicted by CPT coincided with the choice predicted by
the respective heuristic. As a second index of how well CPT captures the choices in the respective choice set, we determined
the deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002), with a lower DIC indicating a bet-
ter correspondence between the model and the data.

As shown in Table E1 (Appendix E), CPT captured choices generated by the heuristics rather well, in most cases mimicking
them more than 70% of the time (range 57–95%). Similarly, the DICs for each heuristic’s choices were considerably better
than expected under chance (i.e., DIC = 249.53; DIC differences larger than 10 are considered as strongly favoring the better
model; see Spiegelhalter et al., 2002, p. 613). However, CPT did not capture all heuristics equally well. Interestingly, the
choices of the heuristics that ignore probabilities (i.e., minimax and maximax) were captured better than those of the pri-
ority heuristic (which sometimes considers probabilities), as reflected by a higher percentage of overlapping choices and
lower DIC values. The worst fit was obtained for those heuristics that consider both outcomes and probabilities (least-
likely and most-likely). It was not the case that CPT had a worse model fit when the gambles had a higher number of out-
comes. Overall, CPT was able to capture the heuristics’ choices rather well, even though some of the estimates showed high
mass at the boundaries of the parameter range (see Appendix F). We return to the differences between the heuristics and CPT
parameter estimates with an extended parameter range in the General Discussion.

2.2. Heuristics’ alter egos in CPT

How do CPT’s parameters characterize the different heuristics in terms of probability and outcome sensitivity as well as
risk and loss aversion? Fig. 1 depicts the weighting and value functions for all five heuristics in the set of problems with two-
outcome gambles graphically. The functions are based on the means of the posterior distributions of the parameter estimates
(the mean values for all CPT parameters and for all three sets of choice problems can be found in Table E1 in Appendix E).

2.2.1. Probability sensitivity
We hypothesized that differences between the heuristics in terms of their consideration of probabilities would be

reflected in the c parameter of CPT’s weighting function. As Fig. 1 shows, CPT indeed yielded weighting functions with very
distinct shapes. As predicted, minimax and maximax resulted in low values of the c parameter—see Table E1 of Appendix E—
that is, in very strongly curved weighting functions; the priority heuristic resulted in a somewhat higher value of c and
therefore a less strongly curved weighting function than minimax or maximax; the least-likely and most-likely heuristics
resulted in values of c close to 1 and therefore the least strongly curved weighting functions. CPT’s c parameter thus veridi-
cally reflected differences in the heuristics’ concern for probabilities. This pattern of results held across the problems with
two-, three-, and five-outcome gambles (see Table E1 in Appendix E).

2.2.2. Outcome sensitivity
CPT also veridically reflected differences between the heuristics in terms of their sensitivity to outcome information, as

indicated by the shapes of the value function estimated for the different heuristics’ choices. Recall that values of a < 1 indi-
cate a more concave (convex) value function in the gain (loss) domain and thus a lower outcome sensitivity. As Fig. 1 (lower
row) shows, for the heuristics that make a choice merely on the basis of outcome information or that consider this informa-
tion first—minimax, maximax, the priority heuristic, and the most-likely heuristic—the value function was approximately
linear (i.e., a was rather high), indicating high sensitivity to outcomes. The least-likely heuristic, by contrast, which chooses
on the basis of probability information, yielded a very low value of a and a very strongly curved value function. This pattern
held consistently across the problems with two-, three-, and five-outcome gambles (see Table E1 in Appendix E).

2.2.3. Risk aversion
Due to their differing concerns for extreme outcomes, the heuristics’ policies may result in differences in the elevation of

CPT’s weighting function, indicating differences in risk aversion. In this context, it is important to distinguish between the
gain and loss domain. In the gain domain, high risk aversion is indicated by a low elevation; in the loss domain, high risk
aversion is indicated by a high elevation. A heuristic such as minimax that invariably focuses on the worst outcomes in both
gains and losses may therefore yield a weighting function with a low elevation for gains (i.e., a low value of d+) and a high
elevation for losses (i.e., a high value of d�). The opposite pattern is predicted for a heuristic such as maximax that bets on the
best outcomes and is thus risk seeking. The estimated parameters confirmed this prediction, and this held across all sets of
choice problems (see Table E1 in Appendix E). Minimax resulted in a weakly (strongly) elevated weighting function for gains
(losses), whereas maximax resulted in a strongly (weakly) elevated weighting function for gains (losses). For the choices gen-
erated by the priority heuristic, CPT yielded low values of the d+ and d� parameters, indicating risk aversion in the gain
domain and risk seeking in the loss domain (i.e., the reflection effect). The most-likely heuristic yielded estimates for d+



Fig. 1. CPT’s weighting function (upper row) and value functions (lower row) estimated for the choices of all five heuristics for problems with two-outcome
gambles (see Table E1 in Appendix E for the parameter values).
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and d� that had intermediate values (for both gains and losses), suggesting risk neutrality. Finally, the least-likely heuristic
resulted in a weakly (strongly) elevated weighting function for gains (losses), suggesting a high level of risk aversion.5

2.2.4. Loss aversion
Our tentative hypothesis was that the focus of minimax, the least-likely heuristic, and the priority heuristic in mixed

gambles on the worst outcomes (losses) would lead to greater loss aversion than shown by heuristics that focus on the best
outcomes (maximax). Concerning the estimated values of the k parameter, the results showed a mixed picture for all five
heuristics (the parameter estimates are reported in Table E1 in Appendix E): For some heuristics, k increased with the num-
ber of outcomes in the gamble; for others, it decreased. Minimax, for instance, showed a strong degree of loss aversion in
problems with two-outcome gambles but less pronounced loss aversion in problems with three- or five-outcome gambles.
In addition, recall that asymmetries in the weighting of gain and loss outcomes can also be represented in CPT’s weighting
function, namely by assuming a higher elevation for loss probabilities than for gain probabilities (i.e., d� > d+; Pachur &
Kellen, 2013; Schmidt & Zank, 2005). Minimax indeed showed a gain–loss asymmetry in the elevation, as did the priority
heuristic and, to some extent, the least-likely heuristic, both of which focus on losses in mixed gambles. For maximax, which
focuses on gains, the pattern was reversed (i.e., d+ > d�), suggesting a higher weighting of gains than losses. For the most-
likely heuristic, the pattern was less consistent. For the problems with two-outcome and five-outcome gambles, the asym-
metry between d+ and d� indicated a small degree of higher weighting of gains over losses; for problems with three-outcome
gambles, in contrast, the asymmetry indicated loss aversion.

3. How does CPT reflect lexicographic search?

Whereas heuristics such as minimax and maximax focus on a single reason, lexicographic strategies such as the priority
heuristic (Brandstätter et al., 2006; see also Payne et al., 1993) assume that multiple reasons are examined sequentially, and
that search is stopped once a reason is found that discriminates between the options. Which reason determines the choice
and how many reasons are inspected by lexicographic strategies depends on the characteristics of the choice problem,
namely which reason is the first to discriminate between the options. Because of this dependency, the outcome or probabil-
ity sensitivity of choices following from a lexicographic heuristic can be expected to vary, depending on the properties of the
choice problems.

Using the priority heuristic as an example of a lexicographic strategy, we next demonstrate that CPT can track this depen-
dency. An analysis of the priority heuristic is also conceptually interesting, because it integrates several other heuristics
(Table 1) into one. For gains, the heuristic first considers the same information on which minimax focuses exclusively (min-
imum outcomes). However, it makes a choice only if the difference between the minimum outcomes exceeds the aspiration
level (Table 1). If not, it turns to the probability of the minimum outcomes (again using an aspiration level). This, in turn,
coincides with the decision rule of the least-likely heuristic. If the probabilities do not differ, the policy of the maximax
5 Overall, these results were robust across the problems with two-outcome, three-outcome, and five-outcome gambles—with one exception. Specifically,
whereas in problems with three- and five-outcome gambles the elevation of the least-likely heuristic’s weighting function indicated risk aversion for gains—
consistent with the heuristic’s focus on the worst outcome—in problems with two-outcome gambles the elevation indicated risk seeking. Why? The least-likely
heuristic chooses the option whose worst outcome occurs with lower probability. In problems with two-outcome gambles, this option is automatically also the
one with the higher probability of the best outcome—and thus the one that a risk-seeking strategy would choose. This regularity may explain why the heuristic
resulted in a highly elevated weighting function for gains in problems with two-outcome gambles.



Fig. 2. CPT’s weighting functions estimated for the choices of the priority heuristic in problems with two-outcome gambles, separately for problems where
the decision was based on the top-ranked reason (probability of minimum gain/loss) in 25%, 50%, or 75% of cases, respectively (the choice was otherwise
based on the second reason: the probability of the minimum gain/loss). See Table E2 in Appendix E for the parameter values.
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heuristic will ultimately be invoked (i.e., focus on maximum outcomes). An analysis of the priority heuristic with CPT across
different sets of choice problems can thus also be viewed as an analysis of how CPT captures the contingent use of various
choice strategies, dependent on the structure of the problems.

We estimated CPT’s parameters for choices generated by the priority heuristic in three sets of problems, in which the
minimum gains (losses) discriminated (and determined the choice) in 75%, 50%, or 25% of cases and probabilities were, in
turn, consulted (and determined the choice) in 25%, 50%, or 75% of cases. We predicted that the CPT parameter c would
increase across these sets, indicating increasing probability sensitivity, because of the increasing consideration of probabil-
ities. We created three sets of two-outcome problems, each including 180 randomly generated choice problems—60 gain, 60
loss, and 60 mixed problems—with similar EVs. The problems were constructed according to the same principles as in our
first analysis (see Appendix C for details).

The weighting functions based on the mean of the posterior distributions of the c parameter showed the predicted pat-
tern across the three problem sets (Table E2 in Appendix E): When choices were based predominantly on outcome informa-
tion (75%), c was relatively low, indicating low sensitivity to probabilities. When choices were based on probability
information in 50% of cases, the c parameter was considerably higher. Finally, when choices relied predominantly on prob-
ability information (75%), c had the highest value. Fig. 2 plots the corresponding weighting functions for the three problem
sets, separately for gains and losses. As can be seen, the curvature of the weighting function is more pronounced for those
sets in which probabilities determine the choice less frequently. The model fit of CPT varied with the percentage of cases in
which the first reason discriminated (see Table E2 in Appendix E), an issue to which we return in the General Discussion. In
the Supplemental Material, we also report an analysis for a modified version of the priority heuristic, in which the order in
which the probability and the magnitude of the minimum outcome are inspected is reversed (Rieskamp, 2008).

To recap, the curvature of CPT’s weighting function veridically reflected differences in how a lexicographic strategy—the
priority heuristic—attended to probabilities across sets of choice problems that differed in the frequency with which choices
were based on probability information. That is, CPT’s parameters can be harnessed to characterize and differentiate lexico-
graphic search orders and search truncation.

4. Using CPT to characterize environment-dependent behavior of heuristics

Our analyses thus far have shown that CPT can be used to characterize the choices of heuristics with respect to probability
sensitivity, outcome sensitivity, and risk aversion. The extent to which a heuristic shows risk aversion may depend on the
structure of the choice environment. The choice problems we have used thus far were constructed such that their probabil-
ities and outcomes were independent (as is often the case in empirical investigations of decision making under risk; see
Pleskac & Hertwig, 2014, Fig. 9). Outside the laboratory, however, there is often a strong negative relationship between pay-
offs and probabilities (Pleskac & Hertwig, 2014, Figs. 3 and 4).

When large rewards and losses tend to be less likely than smaller rewards and losses, how risk averse are the choices
produced by heuristics? In such an environment, the most-likely heuristic, which focuses on the most likely outcomes, will
choose the option with the smaller gains and losses; it should therefore result in risk-averse choices for gains and risk-
seeking choices for losses. Note that this behavior contrasts with the most-likely heuristic’s risk-neutral choices when prob-
abilities and outcomes are uncorrelated (Fig. 1). For the other heuristics, a negative correlation between probabilities and
outcomes should not influence their risk attitude, as they either base their choices solely on outcome information (minimax
and maximax) or consider outcomes first and the associated probabilities later (priority heuristic and least-likely heuristic).

To test this prediction, we repeated the procedure of our computer simulation (with choice problems consisting of gam-
bles with similar EVs) in every respect, except that outcomes (i.e., their absolute magnitudes) and probabilities were now



Fig. 3. CPT’s weighting function (upper row) and value functions (lower row) estimated for the choices of all five heuristics for problems with two-outcome
gambles in which outcomes and probabilities were negatively correlated (see Table E3 in Appendix E for the parameter values).
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negatively correlated, thus creating high conflict between outcomes and probabilities.6 As before, we determined each heuris-
tic’s choices in each of the three new problem sets and estimated CPT’s parameters for these choices (using the same Bayesian
estimation procedure as above). The model fit for CPT, as indicated by posterior predictive checks and DICs, was rather good for
most heuristics (Table E3 of Appendix E). For the choices of the most-likely heuristic, CPT’s fit was much better than in the prob-
lems with uncorrelated outcomes and probabilities. For the least-likely heuristic, however, CPT’s fit was again poor (we will
discuss this point later).

Overall, as shown in Fig. 3, the different heuristics produced similar weighting and value functions in CPT as in the uncor-
related environment. As predicted, however, the one exception was the most-likely heuristic, which yielded a very different
pattern on the elevationparameter d in the correlated environment than it did in the uncorrelated environment: Theheuristic’s
ignorance of rare but large gains and rare but large losses now led to risk aversion for gains and to risk seeking for losses (as
indicated by a pattern of pronounced underweighting in the resultingweighting function)—in contrast to the risk-neutral pat-
tern obtained in theuncorrelatedenvironment. To illustrate, in theproblemswith two-outcomegambles, theparameter values
were d+ = 0.27 and d� = 0.08, indicating risk aversion for gains and risk seeking for losses, as opposed to d+ = 1.72 and d� = 1.23 in
the uncorrelated environment. This pattern held across all three sets of choice problems (see Table E3 of Appendix E).

Moreover, there seemed to be a trend for the probability sensitivity parameter c to be lower in the correlated than in the
uncorrelated environment (see Table E3 of Appendix E). This finding can be explained as follows: In the negatively correlated
environment, the most probable outcome is always the smallest gain or the smallest loss. As the most-likely heuristic focuses
exclusively on these outcomes, its choices in such an environment are comparable to those of minimax for gains and max-
imax for losses, which have a low probability sensitivity. The other parameters were mostly unchanged for this heuristic. For
minimax, maximax, the priority heuristic, and the least-likely heuristic, the resulting parameter profiles were highly similar
to those obtained in the uncorrelated environment. These results illustrate how CPT’s parametric framework can help reveal
a choice policy’s sensitivity (or lack thereof) to changes in the structure of the environment (e.g., Simon, 1956; Todd,
Gigerenzer, & the ABC Research Group, 2012).

5. Model recovery: how well can CPT and the heuristics be distinguished?

Several empirical investigations have compared CPT and heuristics directly as models predicting observed choices
(Glöckner & Pachur, 2012; Pachur, Hertwig, Gigerenzer, & Brandstätter, 2013; Rieskamp, 2008; Su et al., 2013). Our finding
that CPT is able to accommodate heuristic choices highlights a potential problem with these model comparisons: If CPT can
mimic choices generated by heuristics, such choices could erroneously be attributed to a multiplicative mechanism (as
embodied by CPT), and vice versa. To examine this possibility, we conducted a model recovery study (e.g., Pitt & Myung,
2002). Specifically, drawing on the set of 180 two-outcome choice problems used in our first computer simulation (and
which has also been used in previous empirical studies; e.g., Glöckner & Pachur, 2012; Rieskamp, 2008), we simulated
the choices of heuristics as well as the choices of CPT (based on a published set of parameter values); using strategy
6 The average correlation between the probabilities and the outcomes across all problems was strongly negative, with r = –0.70, t(178) = 12.96, p < 0.001,
r = –0.81, t(178) = 18.11, p < 0.001, and r = –0.85, t(178) = 21.60, p < 0.001, for the problems with two-outcome, three-outcome, and five-outcome gambles,
respectively (one-sample t-test testing the mean Fisher’s z-transformed correlation against zero). The correlation between the outcomes and the corresponding
probabilities was determined separately for each problem. To illustrate, for a problem with two-outcome gambles, the correlation of the four outcomes of
gambles A and B and their respective probabilities was computed. We then averaged the z-transformed correlation coefficients across all 180 problems. In the
earlier problem sets, outcomes and probabilities had an average correlation of r = 0.09, t(178) = 1.23, p = 0.22, r = –0.1, t(178) = 1.38, p = 0.17, and r = –0.007, t
(178) = 0.09, p = 0.93 for the problem with two-outcome, three-outcome, and five-outcome gambles, respectively.
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classification, we then inferred which of these models generated a given set of choices. To examine how unsystematic noise
may increase the risk of confusing CPT and heuristics, we varied the amount of noise in the data.

5.1. Data generation

We employed the same 180 two-outcome problems (60 gain, 60 loss, and 60 mixed problems) as in the simulation with
uncorrelatedoutcomes andprobabilities. In a first step, choiceswere generated for sixmodels: theminimaxheuristic, themax-
imaxheuristic, the priority heuristic, the least-likely heuristic, themost-likely heuristic (Table 1), and CPTusing parameter val-
ues reported byGlöckner and Pachur (2012;a = 0.68; k = 1.52;c = 0.73; d = 0.99). In order to examine recovery performance as
a function of different degrees of noise, we varied the percentage of (randomly selected) problems in which the prediction of a
givenmodel was reversed. That is, instead of selecting the option predicted by amodel, the opposite onewas chosen (for other
studies using this approach, see, e.g., Cavagnaro, Gonzalez, Myung, & Pitt, 2013; Yechiam & Busemeyer, 2005). Preliminary
analyses showed that the largest changes in recovery performance occurred with error rates between 35% (63 of the 180
choices reversed) and43.8% (79 of the180 choices reversed).We therefore report the recovery ratesmainlywithin this interval.
As an additional benchmark, we also generated choice sets in which all responses were generated at random.7

5.2. Model recovery

Using a Bayesian latent mixture approach (e.g., Lee, 2016; Zeigenfuse & Lee, 2010), we classified each choice vector (con-
sisting of 180 synthetic choices) to one of the six generating mechanisms or to a ‘‘guessing” mechanism. The key assumption
of this approach is that the observed behavioral data arise from different processes (e.g., cognitive mechanisms). A categor-
ical latent mixture variable z indicates which mechanism generated the data. When modeling a choice, the probability that
option A is chosen over option B in a particular choice problem corresponds to the predicted choice probability of the mech-
anism to which the z variable points. To derive this probability for minimax, maximax, the priority heuristic, the least-likely
heuristic, and the most-likely heuristic, we estimated an application error parameter u for each mechanism that was
assumed to be constant across choice problems. For CPT, we estimated a, k, c, d+, and d– and an application error parameter
u. For comparability with the heuristics, this parameter was assumed to be constant across choice problems. For the ‘‘guess-
ing” mechanism, u was fixed at 0.5. The key result of a latent mixture analysis consists in the posterior distributions of the
latent mixture variable z for each choice vector. For each tested mechanism, the distribution gives the posterior probability
that it generated the data. One key advantage of the posterior distribution is that it automatically balances goodness-of-fit
with all forms of model complexity. Each choice vector was classified to one of the six generating models or to the ‘‘guessing”
mechanism, depending on to which the posterior distribution of the latent mixture variable z indicated the largest probabil-
ity mass. Ideally, the recovered model was the one that actually generated the choices. For each error rate, the procedure was
repeated 1000 times for each generating model.

5.3. Results

Table 3 shows, for different error rates and each generating mechanism, the proportion of choice vectors (averaged across
the 1000 repetitions) that were classified as having been generated by one of the six mechanisms or the ‘‘guessing” mech-
anism, with the proportion of correct recoveries indicated in bold. Cells off the diagonal represent incorrect recoveries, that
is, cases in which a choice vector was classified as having been generated by one mechanism when in fact another had gen-
erated it. With an error rate of 0%, recovery performance was perfect, and it was perfect for error rates up to 33.3% (results
are therefore only shown in Table 3 from an error rate of 35%). Even with an error rate of 42.2%, the generating mechanism
was still correctly recovered in the majority of cases. This held for all mechanisms except for CPT, for which from an error
rate of 40% the majority of cases were classified as guessing. This suggests that for a data set with high noise, the complexity
of CPT is not matched with a corresponding increase in ability to fit the data. There was a slight trend for choices produced by
CPT to be incorrectly recovered more frequently by the priority heuristic than by the other heuristics. This may be due to the
fact that the priority heuristic implies several of the choice regularities that shaped the development of CPT (e.g., reflection
effect, Allais paradox, fourfold pattern; Katsikopoulos & Gigerenzer, 2008). With noise levels higher than 43.3% for all mech-
anisms the majority of cases were classified as guessing. Overall, these results suggest that although CPT is able to accom-
modate choices generated by heuristics, CPT and heuristics can be distinguished with high accuracy, unless when choice
generation is very noisy.8
7 Importantly, note that the model recovery results for a complete set of randomly generated choices might differ from those for a set with a 50% error rate. If
the predictions of a given strategy are reversed in 50% of cases, it will never recover its own choices better than chance. All other strategies, however, could
coincidentally predict these choices better than chance. Therefore, the strategy that never recovers choices better than chance will be penalized relative to the
remaining strategies. When all choices are random, however, all strategies share the same handicap.

8 We obtained similar results when the model parameters were estimated with a maximum-likelihood approach and the simulated choice vectors were
classified based on the Bayesian Information Criterion (BIC; Schwarz, 1979). The main difference was that, with the maximum-likelihood approach, under high
levels of noise (43% or higher) CPT was incorrectly classified as the generating mechanism in a disproportionate number of cases. A potential explanation for
this discrepancy is that, to control for model complexity, BIC takes into account only a model’s number of free parameters, whereas the Bayesian latent mixture
approach is also sensitive to a models’ functional form. Therefore, the identifiability of choices produced by CPT versus heuristics also depends on the method of
model selection.



Table 3
Proportion of classifications as a function of generating mechanism and error rate in the model recovery study. Correct recoveries are in bold.

Error rate Generating mechanism Recovered mechanism

MI MA PH LL ML CPT Guessing

0% MI 1 0 0 0 0 0 0
MA 0 1 0 0 0 0 0
PH 0 0 1 0 0 0 0
LL 0 0 0 1 0 0 0
ML 0 0 0 0 1 0 0
CPT 0 0 0 0 0 1 0

35% MI 0.991 0 0.005 0 0 0.004 0
MA 0 0.999 0 0 0 0.001 0
PH 0.004 0 0.996 0 0 0 0
LL 0 0 0 0.999 0 0.001 0
ML 0 0 0 0 0.991 0.009 0
CPT 0.007 0.008 0.116 0.021 0.006 0.792 0.050

38.3% MI 0.962 0.001 0.017 0 0.002 0.018 0
MA 0 0.980 0.001 0 0.003 0.016 0
PH 0.021 0.002 0.972 0 0.001 0.004 0
LL 0 0 0 0.995 0.002 0.003 0
ML 0.001 0.002 0.001 0 0.959 0.037 0
CPT 0.035 0.025 0.108 0.040 0.043 0.406 0.343

40% MI 0.919 0.001 0.040 0 0.006 0.034 0
MA 0 0.955 0.009 0 0.010 0.026 0
PH 0.032 0.015 0.937 0 0.005 0.011 0
LL 0 0 0.001 0.990 0.001 0.008 0
ML 0.002 0.006 0.003 0.007 0.914 0.068 0
CPT 0.023 0.025 0.124 0.054 0.034 0.282 0.458

42.2% MI 0.795 0.002 0.096 0 0.025 0.079 0.003
MA 0.005 0.863 0.028 0.001 0.034 0.069 0
PH 0.079 0.040 0.827 0.005 0.023 0.026 0
LL 0 0.002 0.004 0.949 0.016 0.029 0
ML 0.015 0.028 0.012 0.016 0.805 0.124 0
CPT 0.041 0.038 0.100 0.055 0.043 0.156 0.567

43.3% MI 0.305 0.007 0.092 0.001 0.027 0.082 0.486
MA 0.011 0.153 0.056 0 0.034 0.085 0.661
PH 0.116 0.056 0 0.006 0.030 0.047 0.745
LL 0 0.007 0.005 0 0.028 0.056 0.904
ML 0.028 0.043 0.033 0.034 0.144 0.122 0.596
CPT 0.030 0.044 0.085 0.058 0.035 0.091 0.657

43.8% MI 0.065 0.013 0.094 0.001 0.020 0.071 0.736
MA 0.008 0 0.051 0.005 0.051 0.078 0.807
PH 0.109 0.040 0 0.013 0.012 0.039 0.787
LL 0 0.003 0.008 0 0.029 0.036 0.924
ML 0.022 0.049 0.022 0.040 0 0.115 0.752
CPT 0.032 0.042 0.054 0.048 0.040 0.103 0.681

50% MI 0 0.017 0.021 0.010 0.027 0.026 0.899
MA 0.038 0 0.030 0.023 0.022 0.011 0.876
PH 0.029 0.022 0 0.027 0.024 0.034 0.864
LL 0.015 0.028 0.018 0 0.021 0.028 0.890
ML 0.035 0.026 0.036 0.022 0 0.018 0.863
CPT 0.034 0.022 0.021 0.020 0.030 0.020 0.853

Random choice 0.033 0.028 0.026 0.030 0.027 0.027 0.830

Note. MI = minimax heuristic, MA = maximax heuristic, PH = priority heuristic, LL = least-likely heuristic, ML = most-likely heuristic.
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6. Using CPT to track heuristic choice in an empirical data set

Our computer simulation analyses demonstrated that each heuristic gives rise to a specific parameter profile that reflects
the heuristic’s processing properties. Next, we illustrate with an empirical study how CPT profiles can be used to infer the use
of a heuristic. In this study, we had participants make (hypothetical) risky choices both between pairs of monetary gambles
and between pairs of medications. In the former, participants risked losing an amount of money with some probability; in
the latter, they risked experiencing a side effect with some probability. Importantly, the choice problems in both domains
were matched monetarily (see below for details). Several studies have found systematically different patterns of choice in
monetary versus medical problems (e.g., Lejarraga, Pachur, Frey, & Hertwig, 2016; Pachur & Galesic, 2013). These differences
have been attributed to side effects triggering stronger affect than monetary losses (Pachur et al., 2014; Suter, Pachur,
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Hertwig, Endestad, & Biele, 2015; Suter et al., 2016; see also Rottenstreich & Hsee, 2001). Might people rely on different
strategies in the different domains?

Our analyses proceeded as follows: We first analyzed the monetary and medical choices separately using CPT. For the
medical choices, we obtained a CPT parameter profile that resembled that of the minimax heuristic (as identified in our com-
puter simulations; see Fig. 1). Based on this result, we conducted a strategy classification, in which individual participants
were classified as using either a compensatory choice strategy (EV strategy) or the noncompensatory minimax heuristic. We
then examined whether this classification was consistent with the CPT analysis—in other words, whether in the medical
choices people were more likely to rely on the minimax heuristic.

6.1. Method

6.1.1. Participants
Eighty students (51 women, aged 17–55 years,M = 25.5) participated for course credit in the study, which was conducted

at the University of Basel. Twenty participants were randomly assigned to each of four between-subjects conditions (see
below).

6.1.2. Materials
As in Suter et al. (2016; see also Pachur et al., 2014), we used the following 12 side effects as medical outcomes: fatigue,

flatulence, diarrhea, fever, itching, trembling, dizziness, insomnia, depression, speech disorder, hallucinations, and memory
loss; monetary losses were used as monetary outcomes. Participants completed four tasks: a monetary evaluation task, two
choice tasks (monetary and medical choice problems), and an affective evaluation task.

In themonetary evaluation task, participants indicated their willingness-to-pay (WTP; in Swiss Francs) to avoid each of the
side effects. Specifically, they were asked to imagine that they were suffering from an illness (not further specified) and had
to take medication for one week. Twomedications are available. Both treat the illness equally well but one exacts a particular
side effect with certainty (e.g., fatigue), whereas the other has no side effects. Participants indicated the amount of money
they would be willing to pay to receive the medication without the side effect rather than the medication with the side
effect.

Next, participants were presented with choice tasks. In one, they chose between two medications, each of which could
lead to a particular side effect with some probability. In the other, they chose between two monetary gambles, each of which
could lead to the loss of an amount of money with some probability. We constructed these problems using the individual-
specific WTPs garnered in the monetary evaluation task and replacing the side effects with the respective WTPs. As a result,
the monetary choice problems matched the medical ones monetarily. Using the entire range of probability levels and taking
advantage of the median WTPs for side effects obtained in Pachur et al. (2014), we constructed 44 medical choice problems
(see Suter et al., 2016, for a complete list of problems) such that an EV strategy and the minimax heuristic made different
predictions in at least 90% of the problems. Finally, in an affective evaluation task, participants rated the amount of negative
affect that the side effects and monetary losses triggered (see the Supplemental Material for details).

6.1.3. Design and procedure
After first completing the monetary evaluation task, participants rendered choices in 44 medical and 44 monetary prob-

lems. The order of the two classes of problems was counterbalanced across participants. Because there were individual dif-
ferences in how the side effects were evaluated monetarily, the outcomes in the monetary problems varied across
participants. Finally, in the affective evaluation task, we counterbalanced (across participants) whether monetary amounts
or side effects were presented first. Overall, we employed a 2 � 2 � 2 design, with the class of choice problems (monetary vs.
medical) as a within-subjects factor and the order of medical versus monetary choice problems as well as the order of med-
ical or monetary outcomes in the affective evaluation task as between-subjects factors.

6.2. Results

6.2.1. How do the CPT parameters characterize monetary and medical choices?
We estimated CPT’s parameters for each participant’s choices, separately for the monetary and the medical problems.9

The parameters were estimated using a Bayesian hierarchical approach, where individual-level parameters are assumed to
be drawn from a group-level distribution (e.g., Scheibehenne & Pachur, 2015; see Appendix D for details). Parameters were esti-
mated with separate group-level distributions for the monetary and the medical problems. Table 4 shows the means of the
group-level distributions for each of the estimated parameters, separately for the two conditions. Fig. 4 depicts the parameter
estimates on the individual-level (upper row; each point represents the mean of the posterior distribution of each participant)
as well as the resulting value and weighting functions (middle and lower row, respectively). As can be seen, there were pro-
nounced differences in the patterns obtained for monetary and medical choices. Specifically, the c parameter was considerably
9 Because all options involved negative (and zero) outcomes and in order to avoid overparameterization, CPT’s loss aversion parameter (k) was set to be 1.
Moreover, we estimated only a single d.



Table 4
Median group-level estimates for cumulative prospect theory (CPT) parameters obtained for choices in the monetary and medical choice tasks and median
difference of the posterior distributions. 95% highest density intervals are in brackets.

Parameter Choice task Parameter difference between monetary
and medical choice task

Monetary Medical

c 0.439 [0.387, 0.501] 0.323 [0.243, 0.416] 0.117 [0.010, 0.217]
d 1.542 [1.180, 2.008] 4.529 [3.384, 4.978] –2.954 [–3.612, –1.763]
a 0.260 [0.223, 0.300] 0.367 [0.297, 0.447] –0.107 [–0.195, –0.026]
u 4.987 [4.898, 5.000] 1.339 [0.909, 1.967] 3.639 [3.007, 4.073]

Note. The deviance information criterion (DIC) for CPT in the monetary and medical choice tasks was 2397.16 and 3960.42, respectively (with a DIC for
guessing of 4879.76).

Fig. 4. The upper row shows the distribution of estimated CPT parameters for the weighting function (c and d) and value function (a), separately for
monetary and medical problems. Each point represents the mean of the individuals’ posterior distribution on the respective parameter. The panels in the
middle row show the weighting functions, separately for the monetary (left) and medical (right) choice task. The gray lines are the functions based on the
parameters on the individual level; the black lines are the functions based on the group-level means. The panels in the bottom row show the value
functions.
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Fig. 5. Proportion of participants classified as following the compensatory expected value strategy (EV), the noncompensatory minimax heuristic, or who
remained unclassified, separately for the monetary and the medical choice tasks.
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lower in the medical than in the monetary choice task, indicating that participants’ choices were less sensitive to probabilities in
the former than in the latter. The d parameter was considerably higher in the medical choice task—as reflected by a much more
elevated weighting function (see middle row, of Fig. 4)—suggesting that participants were more risk averse in the medical than
in the monetary problems (Gonzalez & Wu, 1999). Furthermore, as indicated by values of the a parameter, CPT’s value function
was less strongly curved in the medical than in the monetary problems, indicating higher outcome sensitivity (see lower row of
Fig. 4).

The profile of CPT parameters in the medical problems—low probability sensitivity, high elevation, and high outcome sen-
sitivity—is thus similar to that obtained for the minimax heuristic in the computer simulations (Fig. 1). The CPT analysis of
the empirical choices might thus suggest systematic differences in strategy use across monetary and medical problems, with
more use of the minimax heuristic in the latter domain. Next, we investigate this possibility directly.

6.2.2. Strategy classification
To examine potential differences in strategy use across medical and monetary problems, we modeled people’s choices in

both domains using two candidate strategies: (a) the EV strategy, according to which each option’s outcomes, weighted by
their respective probabilities, are integrated and the option with the highest EV is chosen; and (b) the minimax heuristic
(Table 1). To derive predicted choices for the medical problems, we used each individual’s WTPs (from the monetary eval-
uation task) as a proxy for how he or she evaluated the side effects. As in the model recovery study, we used a Bayesian latent
mixture approach to classify each participant as using the strategy that best described their choices. The probability that per-
son i chooses option A over option B on item j using strategy k is denoted as p(A, B)ijk. For this analysis, the probability is
defined as
10 We
worse (
pðA;BÞijk ¼
eukiVkðAÞ

eukiVkðAÞ þ eukiVkðBÞ � gki þ
gki

2
; ð5Þ
where u is a choice sensitivity/scaling parameter (see Appendix D), and g (ranging between 0 and 1) is the probability of
random guessing; both parameters are estimated for each person and for each strategy from the data.10

For the EV strategy, the subjective valuations of options A and B, V(A) and V(B), were defined as VEV(A) = xA � pA and VEV

(B) = xB � pB (with x and p being the outcome and probability of the nonzero outcomes of the option, respectively); for min-
imax, the valuations were defined as VMI(A) = xA and VMI(B) = xB. In addition, we modeled the data with a pure guessing strat-
egy, which assumes that p(A, B)ij = 0.5 across all trials.

Each participant was classified based on the posterior distribution of the latent mixture variable z, separately for the mon-
etary and the medical condition. The median (across participants) estimated values of the u and the g parameters for the EV
strategy were 2.96 (2.47) and 0.35 (0.58), respectively, in the monetary (medical) problems; for minimax, the values were
2.50 (2.51) and 0.50 (0.50), respectively. Fig. 5 shows that more participants were classified as following the EV strategy in
the monetary than in the medical problems (91.3% vs. 51.3%, v2(1) = 25.03, p = 0.001; with McNemar’s test). For minimax,
the opposite pattern emerged (5.0% vs. 36.3%, v2(1) = 19.9, p = 0.001). The percentage of participants who were best
described by guessing, and thus assigned to the category ‘‘unclassified”, was similar across both domains (3.8% vs. 12.5,
v2(1) = 2.77, p = 0.096). Consistent with the specific pattern of CPT parameters obtained for the medical choices, the strategy
classification suggests that the minimax heuristic was used more frequently in the medical than in the monetary domain.
The mapping of parameter profile and minimax is further supported in Table 5. It shows the median individual-level CPT
parameters, separately for participants who were best described by the EV strategy and the minimax heuristic, focusing
also tested a model without the g parameter. Although the results yielded a similar qualitative classification pattern, the model fit was considerably
with DICs of 3801.50 vs. 3512.77 and 4472.66 vs. 4306.89 in the monetary and medical conditions, respectively).



Table 5
Average (across individual participants) cumulative prospect theory (CPT) parameter estimates in the medical choice
task for participants classified as following the EV strategy or the minimax strategy, respectively.

CPT parameter Classified strategy in medical choice task

EV (n = 41) Minimax (n = 29)

c 0.456 0.207
d 3.653 4.052
a 0.356 0.425
u 1.729 1.438
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(due to the lack of variability in strategy use in the monetary problems) on the medical problems. The CPT parameter profile
obtained here is even more similar to the profile of the minimax heuristic (see Fig. 1 and Appendix E).

Overall, the results illustrate that the use of CPT to model variability in choice needs not stop at fitting choices. CPT can
also be used to make inferences about differences in information processing—from compensatory integration to noncompen-
satory probability neglect (as implemented by minimax)—and to indicate the operation of a heuristic. CPT and heuristics can
thus complement each other in describing choice behavior. Consistent with the conclusion that medical choices involve less
attention to probability information, Pachur et al. (2014; Study 3) found in a process-tracing study that people paid less
attention to probability information in medical than in monetary problems (see also Suter et al., 2015). We acknowledge,
however, that a portion of participants remained unclassified, meaning that they probably employed other strategies.

7. Model recovery: how well can the heuristics be recovered based on their CPT parameter profiles?

The previous analysis showed that the CPT parameter profile of heuristics can guide the search for the operation of a
specific heuristic in an empirical data set. Next, we conducted a model recovery study to address this issue more generally.
Specifically, we asked how well the minimax heuristic, the maximax heuristic, the priority heuristic, the least-likely heuris-
tic, and the most-likely heuristic can be recovered based on their specific profiles on CPT’s parameters (as identified in our
main analysis; see Table E1 in Appendix E). To that end, we modeled sets of choices produced by the five heuristics with five
‘‘variants” of CPT, each representing CPT with the parameter profile of a specific heuristic. We again varied the amount of
noise in the heuristics’ choices to see how this would affects recovery performance. The question was how well CPT with
the parameter profile that best captured a specific heuristic would also be the one that best models the heuristic’s choice
pattern. This is relevant because CPT, even when fitted to the choices of a heuristic, is only able to represent the heuristic’s
choices to some extent, but not perfectly (see Table E1 in Appendix E).

7.1. Data generation

We used the same 180 two-outcome problems (60 gain, 60 loss, and 60 mixed problems) as in the other model recovery
study. In a first step, choices were generated for the five heuristics on each of the problems. Sets with different error rates
were again implemented by varying the percentage of (randomly selected) problems in which the prediction of a given
model was reversed. Preliminary analyses showed that the largest changes in recovery performance occurred at error rates
between 5% (9 of the 180 choices reversed) and 27.8% (50 of the 180 choices reversed). We therefore report the recovery
rates mainly within this interval.

7.2. Model recovery

We modeled the heuristics’ choices using the choice probabilities (for each of the 180 problems) predicted by CPT based
on the five heuristics’ parameter profiles (see Appendix D and E), as well as random choice (i.e., constant choice probability of
0.5). With a Bayesian latent mixture approach, we classified each heuristic’s set of choices to one of the five CPT profiles or as
random choice, based on the posterior distribution of the latent mixture variable z. Ideally, the recovered CPT profile model
was the one that corresponded to the heuristic that actually generated the choices. For each error rate, the procedure was
repeated 1000 times for each generating heuristic.

7.3. Results

As shown in Table 6, with an error rate of 0% for all heuristics the recovery performance was perfect—that is, the operation
of a heuristic was always accurately detected based on their respective CPT profiles. Recovery was highly accurate for all
heuristics up to an error rate of 5% (9 out of 180 problems); beyond that, recovery performance became worse. This was
the case, in particular, for the maximax heuristic, which was often recovered as having been produced by the CPT profile
of the most-likely heuristic. For the other heuristics, recovery performance became gradually worse with increasing error
rates (with increasingly more assignments to the guessing mechanism), first for minimax, then for the priority heuristic,



Table 6
Proportion of classifications as a function of generating heuristic and error rate in the model recovery study. Correct recoveries are in bold.

Error rate Generating heuristic Recovered CPT profile

MI MA PH LL ML Recovered as guessing

0% MI 1 0 0 0 0 0
MA 0 1 0 0 0 0
PH 0 0 1 0 0 0
LL 0 0 0 1 0 0
ML 0 0 0 0 1 0

5% MI 0.898 0 0 0 0 0.102
MA 0 0.871 0 0 0.183 0
PH 0 0 0.993 0 0 0.007
LL 0 0 0 1 0 0
ML 0 0 0 0 0.990 0.010

5.6% MI 0.816 0 0 0 0 0.184
MA 0 0.527 0 0 0.473 0
PH 0 0 0.990 0 0 0.010
LL 0 0 0 1 0 0
ML 0 0 0 0 0.980 0.020

6.7% MI 0.656 0 0 0 0 0.344
MA 0 0.114 0 0 0.886 0
PH 0 0 0.953 0 0 0.047
LL 0 0 0 1 0 0
ML 0 0 0 0 0.946 0.054

8.3% MI 0.359 0 0 0 0 0.641
MA 0 0.004 0 0 0.996 0
PH 0 0 0.889 0 0 0.111
LL 0 0 0 0.999 0 0.001
ML 0 0 0 0 0.887 0.113

13.9% MI 0.012 0 0 0 0 0.988
MA 0 0 0 0 0.998 0.020
PH 0 0 0.328 0 0 0.672
LL 0 0 0 0.960 0 0.040
ML 0 0 0 0 0.571 0.429

27.8% MI 0 0 0 0 0 1
MA 0 0 0 0.001 0.242 0.757
PH 0 0 0.001 0 0 0.999
LL 0 0 0 0.437 0 0.563
ML 0 0 0 0.002 0.076 0.922

50% MI 0 0 0 0.023 0 0.977
MA 0 0 0 0.020 0 0.980
PH 0 0 0 0.020 0.001 0.979
LL 0 0 0 0.015 0 0.985
ML 0 0 0 0.021 0 0.979

Note. MI = minimax heuristic, MA = maximax heuristic, PH = priority heuristic, LL = least-likely heuristic, ML = most-likely heuristic.
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and the most-likely heuristic. For the least-likely heuristic, about half the cases were correctly recovered even with an error
rate of 27.8%. Overall, these results show that even though CPT cannot mimic the heuristic choices perfectly, the CPT profiles
of the heuristics are diagnostic for detecting the operation of the underlying heuristic, at least when the amount of noise is
not overly pronounced.

The one qualification is that maximax was incorrectly attributed to the CPT profile of the most-likely heuristic already at
quite low error rates. There are two reasons for this. First, as can be seen in Table 7, showing the overlap in choice between
the heuristics and CPT assuming the heuristics’ parameter profile, there was a high overlap (73%) between the choices pre-
dicted by maximax and those predicted by CPT with the most-likely heuristic’s parameter profile. Second, the choice prob-
abilities predicted by CPT with the parameter profile of the most-likely heuristic were less variable across the 180 problems
than those predicted by CPT with the parameter profile of maximax (with standard deviations of 0.23 vs. 0.48, respectively).
This renders the former less complex, thus giving it an edge in the Bayesian latent mixture analysis.

8. General discussion

We showed how two disjoint approaches to modeling risky choice can be related to each other, despite their fundamen-
tally different algorithmic structures. Such analyses can help to integrate psychological theory and to build bridges between



Table 7
Overlap in predicted choices between the heuristics and CPT, using the parameter profile produced by the respective heuristic (see Table E1 in Appendix E). The
overlap of the choices of the heuristic with those of its corresponding variant of CPT are in bold.

CPT based on the respective heuristic’s parameter profile

MI MA PH LL ML

Heuristic MI 0.744 0.433 0.628 0.461 0.456
MA 0.578 0.956 0.661 0.517 0.733
PH 0.594 0.606 0.689 0.483 0.511
LL 0.283 0.328 0.311 0.694 0.522
ML 0.517 0.539 0.489 0.556 0.661

Note. MI = minimax heuristic, MA = maximax heuristic, PH = priority heuristic, LL = least-likely heuristic, ML = most-likely heuristic.
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economics, which relies almost exclusively on algebraic models to describe risk choice, and psychology, which studies both
algebraic models and process-oriented heuristic models. Both modeling traditions stand to benefit from such
integration. Next we discuss some of the potential benefits. Then we discuss the empirical evidence for heuristics in risky
choice, CPT’s limits in representing heuristic choice, and how CPT represents heuristics when assuming an extended param-
eter range.

8.1. Benefits for algebraic models

8.1.1. From as-if models to psychometric tools
Algebraic models, with their focus on describing preference patterns, are mute about the cognitive processes underlying

choice. Milton Friedman (1953) famously argued that in modeling human behavior, ‘‘complete ‘realism’ is clearly unattain-
able, and the question whether a theory is realistic ‘enough’ can be settled only by seeing whether it yields predictions that
are good enough for the purpose at hand” (p. 41). For Friedman, the purpose at hand was to capture the behavior of economic
institutions, not individuals. Consequently, models such as expected utility theory can be tested only in terms of their behav-
ioral predictions (see, e.g., Gul & Pesendorfer’s, 2005, defense of ‘‘mindless economics”).

CPT analyses usually do not (at least not explicitly) assume that people are able to or actually do calculate subjective val-
ues and decision weights according to Eqs. (1), (2), and (4); the CPT framework thus stands in the tradition of algebraic mod-
els. Nevertheless, CPT postulates psychological constructs such as loss aversion and risk aversion, whose cognitive and neural
roots have been investigated (e.g., Tom, Fox, Trepel, & Poldrack, 2007;Willemsen, Böckenholt, & Johnson, 2011). Our analyses
demonstrate still another way to connect CPT (and, by extension, other algebraic models invoking psychological constructs)
to underlying cognitive processes. To wit, algebraic models can be employed as measurement tools to characterize, for
instance, heuristic processes (e.g., lexicographic search) and the individuals enlisting them in terms of the constructs built
into the models’ algebraic functions (e.g., risk aversion, loss aversion, and probability sensitivity). Such a ‘‘cognitive psycho-
metrics” perspective on formal models is popular in memory research (Batchelder, 1998; Riefer, Knapp, Batchelder, Bamber,
& Manifold, 2002), but has barely been invoked in work modeling the cognitive underpinnings of risky choice (and variability
therein).

8.1.2. Cognitive foundation of CPT
Prospect theory has psychophysical roots that Kahneman and Tversky (1979) highlighted, for instance, in the context of

diminishing sensitivity: ‘‘Many sensory and perceptual dimensions share the property that the psychological response is a
concave function of the magnitude of physical change” (p. 278). Without challenging either this reference to psychophysics,
or Stewart et al.’s (2006) elegant elaboration of possible ecological roots of CPT’s functions, we propose that linking CPT with
heuristics offers still another foundation of the empirically observed value and weighting functions. From this perspective,
individual differences in the shapes of these functions may stem, at least in part, from distinct heuristic principles of infor-
mation processing.

Connecting CPT with models of heuristics also permits an information-processing interpretation of differences in CPT’s
parameters due to factors such as gender (Fehr-Duda, De Gennaro, & Schubert, 2006), age (Harbaugh, Krause, &
Vesterlund, 2002; Pachur, Mata, & Hertwig, in press) and criminal tendencies (Pachur, Hanoch, & Gummerum, 2010).
Fehr-Duda et al., for instance, concluded that women tend to be less sensitive than men to differences in probabilities
(see also Booij & van de Kuilen, 2009). One reason could be that they employ different choice heuristics.

We should, however, also point out a potentially important drawback of invoking heuristic processes as possible cognitive
underpinnings of characteristic shapes of CPT. For many algebraic models, it has been shown that if the decision maker sat-
isfies particular axioms (e.g., independence, transitivity), it is possible to derive the properties of the underlying utility scale
(e.g., von Neumann & Morgenstern, 1947). Some heuristic processes have been shown to violate some of these fundamental
axioms (e.g., Tversky, 1969; but see Katsikopoulos & Gigerenzer, 2008). If one accepts heuristics as underlying processes of
choice, then such inferences about the utility measurement may not be warranted.
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8.2. Benefits for models of heuristics

8.2.1. Characterizing and comparing heuristics in terms of CPT’s constructs
Choice heuristics are usually compared with each other in terms of their building blocks, specifically, their search, stop-

ping, and decision rules (see Brandstätter et al., 2006; Gigerenzer et al., 2011; Payne et al., 1993; see also Shah &
Oppenheimer, 2008). Our analysis indicates that they can also be compared in terms of the constructs of algebraic models,
such as risk aversion, loss aversion, outcome sensitivity, and probability sensitivity. How the policy of a heuristic translates
into these constructs need by no means be obvious, especially when the properties of a heuristic’s choices interact with the
choice environment. For instance, we found the most-likely heuristic to be risk neutral in randomly constructed gambles
(i.e., Table E1 in Appendix E); however, in environments in which outcomes and probabilities were negatively correlated,
the heuristic was risk averse in the gain domain and risk seeking in the loss domain (Table E3).

8.2.2. Multi-method approach to identifying processes
Models of heuristics are meant to be accounts of both the content and the outcome of the choice process. Our findings

suggest a multi-method approach to process identification. Alongside algebraic tools to measure properties of the process,
it is also possible to harness process tracing. For instance, Pachur, Schulte-Mecklenbeck, Murphy, and Hertwig (submitted for
publication) combined Mouselab, a process-tracing methodology, with CPT and found that decision makers with lower prob-
ability sensitivity—as measured by the weighting function parameter c—paid less attention to probabilities (inferred from
how long they inspected probability information) than decision makers with higher probability sensitivity. Conversely, deci-
sion makers with higher outcome sensitivity—as measured by the parameter a in the value function—allocated more atten-
tion to outcomes. Moreover, the amount of time they inspected negative relative to positive outcomes correlated positively
with the loss aversion parameter k.

Conversely, it should be emphasized that CPT’s ability to accommodate choices generated by heuristics disallows the con-
clusion that a good model fit of CPT means that the choices were necessarily brought about by a compensatory, expectation-
based cognitive mechanism. Instead, it is important to further unpack the processes behind the choices (e.g., by using
process-tracing data)—they might be noncompensatory after all.

8.3. Heuristic information processing in risky choice

The concern of our analysis was conceptual: What footprints would various possible (and proposed) heuristic
information-processing rules—varying in, for instance, their consideration of probability information and attention to
extreme outcomes—leave in CPT’s parametric framework? Having addressed this question, let us briefly turn to the empirical
question of whether risky choice appears to be shaped by heuristic processes.

Consistent with the heuristics’ signature of limited search and skewed attention to available information, it has been con-
cluded (from observed choices patterns) that people place a strong ‘‘emphasis on the amount of money associated with the
smallest probability” (Lichtenstein, 1965, p. 168), and process risky options based on a lexicographic ordering of relevant
reasons. Indicators for limited search have also emerged in process-tracing studies (Mann & Ball, 1994; Payne &
Braunstein, 1978; Russo & Dosher, 1983; Su et al., 2013). In line with Tversky’s (1972) suggestion that people simplify risky
choice by comparing probability and outcome information separately (and across gambles) rather than integrating it, some
studies have found evidence for predominantly between-gamble transitions (Mann & Ball, 1994; Payne & Braunstein, 1978;
Rosen & Rosenkoetter, 1976; Russo & Dosher, 1983; Su et al., 2013). In addition, the amount of information examined often
varies substantially across choice problems—a finding that has been interpreted as indicative of lexicographic heuristics (e.g.,
Mann & Ball, 1994; Payne & Braunstein, 1978; Russo & Dosher, 1983; Slovic & Lichtenstein, 1968).

Several investigations have concluded that, at least in some choice environments, models of heuristics offer a promising
approach (e.g., Pachur et al., 2013). For instance, Venkatraman et al. (2009), studying complex multi-outcome gambles, found
that some participants nearly always employed a heuristic that maximizes the probability of winning and ignores reward
magnitude (see also Venkatraman, Payne, & Huettel, 2014). Furthermore, enlisting process-tracing methodologies such as
neuroimaging and verbal protocols, Rao, Li, Jiang, and Zhou (2012) and Cokely and Kelley (2009) found evidence consistent
with the use of noncompensatory heuristics in risky choice.

Other studies, however, have obtained little supportive evidence for heuristics. For instance, empirical tests of the priority
heuristic found that people do not examine risky options as predicted by the heuristic (e.g., Birnbaum & LaCroix, 2008;
Fiedler, 2010; Glöckner & Betsch, 2008; Glöckner & Herbold, 2011). For instance, in a process-tracing analysis, Johnson
et al. (2008) observed that people transition between outcomes and probabilities more frequently than predicted by the
heuristic. In addition, CPT outperformed the priority heuristic—and 12 other heuristics—in predicting individual choices
(Glöckner & Pachur, 2012).

At this point, the following conclusion seems fair: Whereas indicators of cognitive processes in risky choice often, but not
always, signal the operation of heuristic principles of information processing, no existing model of a heuristic can explain
risky choice across a large range of choice ecologies and task structures. One possible explanation is that people switch
between different processes (some perhaps more heuristic than others) across trials in ways that are not yet understood
(but see Venkatraman et al., 2009). However, the contribution of specific heuristic processes seems to be systematically
higher under certain conditions, such as time pressure or affective content (Pachur et al., 2014; Payne et al., 1993; Young,



64 T. Pachur et al. / Cognitive Psychology 93 (2017) 44–73
Goodie, Hall, & Wu, 2012; see also our analysis of medical and monetary choice reported above). Our analyses suggest that
CPT can be used as a tool to track such differences in processing.

8.4. Why does CPT fit some heuristics better than others?

Although CPT is able to accommodate choices generated by various heuristics, our analyses also clearly showed limits in
CPT’s ability to represent the choice patterns of some of the heuristics. First, for some heuristics, the posterior distributions
for several parameters had a high mass at the parameter boundaries, indicating inadequacies in model specification (Appen-
dix F). Second, model fit differed across the heuristics (Table E1 in Appendix E). Third, CPT’s fit to the priority heuristic’s
choices differed as a function of the frequency with which the top-ranked reason discriminated. Fourth, CPT’s model fit var-
ied as a function of whether outcomes and probabilities were negatively correlated or uncorrelated. Why does CPT capture
some heuristics better than others, and why does model fit depend on the environment?

One factor that affects CPT’s ability to fit a heuristic’s choices is whether the rank of the outcomes (among all possible
outcomes, ordered by magnitude) that determines the choice is the same across all problems, or whether it varies. For
the minimax and the maximax heuristic, the rank is invariant: these heuristics always base their choices on the best or
the worst outcome, respectively. CPT can emulate such policies (resulting in a good model fit) by assuming relatively
extreme parameter values in the weighting function, thus giving all the weight to the first or last ranked outcome. The
most-likely heuristic, by contrast, bases its choice on the outcome with the highest probability, and this outcome can be
the best, worst, or a medium outcome (at least in environments in which outcomes and probabilities are uncorrelated). Con-
sequently, CPT’s ability to emulate the choices of this heuristic is more limited.

The variability of the rank of the outcome on which a heuristic bases a choice also explains why CPT captures the choices
of the most-likely heuristic better with negatively correlated than with uncorrelated outcomes and probabilities. When out-
comes and probabilities are negatively correlated, the most-likely heuristic always chooses based on the smallest gains or
the smallest losses, as these are the most probable outcomes. In uncorrelated environments, the rank of the decisive outcome
will be variable, as the most probable outcome can be the highest, lowest, or a medium outcome. Therefore, CPT fits the
choices of the most-likely heuristic better in the former than in the latter environment.

Finally, why did we observe that CPT’s model fit with the priority heuristic was best when the heuristic’s highest ranked
reason (minimum outcomes) discriminated in 75% of the problems, decreased when it discriminated in 50%, and then
improved again when it discriminated in only 25% of the problems? As explained earlier, the priority heuristic’s first two
processing steps embody sequential application of the minimax and the least-likely heuristic. As can be seen from the result-
ing value and weighting functions (Fig. 1), these two heuristics have distinct ‘‘parametric personalities.” CPT seems better
able to fit choices when all or most are brought about by a single policy (either minimax or least-likely). When choices
are based on two distinct policies with approximately equal frequency (the 50% choice set), in contrast, CPT is less able to
accommodate them using a single set of parameters. It follows that the CPT framework would have more difficulties captur-
ing an ensemble of different choice processes (e.g., aggregated across heterogeneous problem types or across individuals).

It is important to keep these limitations of CPT in capturing choice patterns conceptually separate from the limitations of
CPT identified by Birnbaum and others (e.g., Birnbaum, 2008; Wu & Markle, 2008). The latter concern CPT’s empirical short-
comings—for example, that decision makers sometimes violate CPT’s assumptions of coalescing, stochastic dominance, and
gain–loss separability. These violations can be explained by assuming particular ways in which attention is allocated to rank-
ordered outcomes (e.g., Birnbaum, 2008). Importantly, these patterns of attention allocation are constant across choice prob-
lems. In the heuristics that CPT has difficulty emulating, by contrast, the pattern of attention allocation (i.e., which outcome
determines a choice) varies across problems.

8.5. Heuristics reflected when CPT parameter ranges are extended

To what extent do the previously discussed limits in CPT’s ability to capture choice patterns compromise efforts to relate
CPT and heuristics? One the one hand, evidence for such limits is important in and of itself. It underlines that CPT, notwith-
standing its functional complexity and multiple adjustable parameters, is not infinitely flexible. However, even within the
parameter bounds (reflecting CPT’s characteristic conceptual assumptions), CPT was flexible enough to represent distinct
heuristics by assuming different shapes in the weighting and value functions; in addition, these differences were meaning-
fully associated to differences in the heuristics’ information processing architectures. On the other hand, the limits on the
range of CPT parameter values are likely to restrict the theory’s flexibility as a measurement tool.

To gauge the impact of this limitation, we reran the computer simulations with an extended (but still reasonable) param-
eter range. Specifically, the parameters were set to 0 6 a 6 3; 0 6 k 6 10; 0 6 c 6 3; 0 6 d± 6 10; 0 6 u 6 5, thus also render-
ing possible, for instance, a convex (concave) value function in gains (losses) (with a > 1), an S-shaped weighting function
(with c > 1), and gain seeking (with k < 1). How did CPT accommodate the heuristics’ choices with these extended parameter
ranges?

It was only in a few cases that the increased model flexibility endowed CPT with a considerably better ability to accom-
modate the heuristics’ choices: For the most-likely heuristic in the choice ecology with problems with similar EVs, and for
minimax and maximax in the ecology with problems with dissimilar EVs and the negatively correlated environment, the DIC
was considerably lower (indicating a much better ability to capture the data) and the posterior predictives were more accu-



Fig. 6. CPT’s weighting function (upper row) and value functions (lower row) estimated for the choices of all five heuristics for problems with two-outcome
gambles using an extended parameter range (see the Supplemental Material for the parameter values).
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rate (see Supplemental Material). For all other heuristics, however, model fit was only slightly better than with the more
restricted parameter ranges.

What about the estimated parameters? For illustration, Fig. 6 shows the resulting weighting and value functions for prob-
lems with two-outcome gambles with similar EVs (the posterior distributions of the parameters as well as the parameter
estimates and the results for the other computer simulations are reported in the Supplemental Material). There are two main
differences relative to the previous analyses (e.g., Fig. 1). First, for the least-likely and most-likely heuristics, the weighting
functions were now S-shaped instead of linear. Importantly, however, an S-shaped weighing function still indicates very high
sensitivity (in fact, hypersensitivity) to differences in probabilities—consistent with these heuristics’ strong focus on proba-
bility information. Second, for minimax, maximax, and the most-likely heuristic, the value functions indicated hypersensi-
tivity to differences in outcomes (i.e., a strongly convex value function in gains and a concave value function in losses)—again
consistent with these heuristics’ focus on outcomes.

In summary, a more permissible parameter space increased—albeit not drastically—CPT’s ability to describe choices gen-
erated by heuristics. Similarly, some of the heuristics’ parametric profiles changed noticeably, but estimates of CPT’s weight-
ing and value functions still veridically reflected properties of the heuristics’ information processing. Furthermore, in both
sets of analyses—with narrower versus wider parameter ranges—CPT was able to represent the distinct heuristics. In our
view, there is no ‘right’ or ‘wrong’ parameter range to implement CPT. In the case of the narrower range, the ability of
CPT as a measurement model is somewhat more limited; yet this parameter range reflects the theoretical commitments
of the theory and allows for comparisons with other CPT analyses. In the case of the wider range, CPT becomes a more gen-
eral measurement tool, covering a wide range of shapes of the value and weighting functions. There are good arguments for
either choice of range. The most important point is to consistently use one range within an analysis or to conduct a compar-
ative analysis. We thus conclude that, even with expanded parameter bounds (going beyond the assumptions of CPT), esti-
mates of CPT’s weighting and value functions veridically reflect properties of the heuristics’ information processing
architectures.
9. Conclusion

Algebraic models and models of heuristics represent two prominent but disjoint approaches to capturing risky choice. Yet
the gulf between them is not as wide as it is often suggested and perceived to be. Connecting the two approaches affords
substantial benefits for both. Moreover, the integrative perspective on risky choice adopted here need not be limited to
CPT and heuristics. Other models that could likewise be used to measure different heuristic policies on psychological dimen-
sions include the transfer-of-attention-exchange model (Birnbaum & Chavez, 1997), the perceived relative argument model
(Loomes, 2010), and decision field theory (Busemeyer & Townsend, 1993), as well as other diffusion models (e.g., Ratcliff,
1978). Theory integration is only one corrective to the often lamented theoretical fragmentation in psychology but, we sub-
mit, a powerful and underused one.
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Appendix A

A.1. Predictions for CPT’s weighting function for the different heuristics

As described in Eq. (3), CPT assumes a rank-dependent transformation of the outcomes’ probabilities into decision
weights. As a consequence, the decision weight resulting from a probability depends on the rank of its respective outcomes
(among the other outcomes). For instance, when a choice problem has three positive outcomes (o1, o2, and, o3 in ascending
order), the decision weights will be w(p3) for the highest outcome o3, w(p2 + p3) – w(p3) for the medium outcome o2, and 1 –
w(p2 + p3) for the lowest outcome o1. How can the decision weights in CPT accommodate heuristic choices?

A.1.1. Minimax
For minimax, which considers the lowest outcome only, the decision weights of the three outcomes are 1 – w(p2 + p3),

that is, 1 – 0 = 1 for the lowest outcome o1; w(p2 + p3) – w(p3) = 0 – 0 = 0 for the medium outcome o2; and w(p3) = 0 for
the highest outcome o3. In order to obtain decision weights of 0 for the medium and the highest outcome, the weighting
function has to be extremely inverse S-shaped with an extremely low elevation.

A.1.2. Maximax
For maximax, which considers the highest outcome only, the decision weights of the three outcomes are 1 – w(p2+p3),

that is, 1 – 1 = 0 for the lowest outcome o1; w(p2 + p3) – w(p3) = 1 – 1 = 0 for the medium outcome o2; and w(p3) = 1 for
the highest outcome o3. In order to obtain decision weights of 0 for the lowest and the medium outcome, the weighting func-
tion has to be extremely inverse S-shaped with an extremely high elevation.

A.1.3. Priority heuristic
The priority heuristic first inspects the minimum outcomes and turns to their probabilities only if the minimum outcomes

do not discriminate between the options (see Table 1). Its processing scheme is therefore a blend of minimax and the least-
likely heuristic, which always decides based on the probabilities of the minimum outcomes (see below), and therefore
results in a weighting function that lies between the two. The degree of curvature depends on the proportion of choices
in which the heuristic turns to probability information (see our analysis of lexicographic search in the main text).

A.1.4. Least-Likely
For the least-likely heuristic, which decides based on the probabilities of the minimum outcomes, choices always take

these probabilities into account. This means that the weighting function has to reflect this sensitivity as well as the lack
of sensitivity to the higher outcomes’ probabilities. With an inverse S-shaped weighting function, the highest outcomes
would receive more weight than they should. Therefore, a weighting function with little (if any) curvature and a low eleva-
tion is predicted, as it retains the least-likely heuristic’s sensitivity to the minimum outcomes’ probabilities without giving
more weight to higher outcomes.

A.1.5. Most-likely
The most-likely heuristic chooses the option whose most likely outcome is more attractive. To approximate this policy,

the weighting function has to conserve the order of the probabilities, ensuring that the decision weight of the outcome with
the highest probability is not smaller than the decision weights of other outcomes. In an environment in which outcomes
and probabilities are uncorrelated (i.e., where the highest probability can be associated with every outcome), this can only
be achieved by a linear weighting function, as otherwise it is possible that the decision weights given to the other outcomes
are too high.

Appendix B

B.1. CPT profiles of heuristics in easy choice problems

The analyses in the main text were based on choice problems in which the difference between the options’ EVs was rel-
atively small and both options were thus similarly (un)attractive. Can CPT also capture heuristic choice policies in problems
with dissimilar EVs, where one option is clearly superior to the other? Given its commitment to an expectation core, CPT
might not be flexible enough to represent such choices, resulting in poor model fit and parameter patterns that do not reflect
the heuristics’ processing properties as meaningfully.

To address this question, we repeated the analyses described in the first computer simulation for problems in which the
difference between the options’ EVs was relatively large (for a description of the general problem construction procedure, see



Table B1
CPT parameter estimates for the choices of each of the five heuristics in problems with two-, three-, and five-outcome gambles, respectively, with dissimilar
EVs. Also shown are the deviance information criterion (DIC) of CPT and the results of posterior predictive checks (PP) indicating the proportion of choices for
which CPT, based on the posterior distributions of the parameters, generated the same choice as the respective heuristic.

Heuristic Parameters DIC PP

c d+ d� a k u

Two-outcome gambles
Minimax 0.05 0.06 4.33 0.77 1.44 0.65 56.42 0.94
Maximax 0.02 4.59 0.02 0.89 2.74 0.93 29.37 0.97
Priority 0.05 0.31 1.83 0.56 3.64 2.36 23.51 0.97
Least likely 0.89 2.86 2.18 0.06 3.40 3.81 164.30 0.69
Most likely 0.84 1.27 0.26 0.71 2.25 0.44 52.61 0.94

Three-outcome gambles
Minimax 0.04 0.11 4.51 0.89 2.30 0.17 99.82 0.87
Maximax 0.01 4.75 0.01 0.93 2.87 1.03 34.21 0.95
Priority 0.03 0.05 1.37 0.62 1.87 1.19 78.96 0.89
Least likely 0.91 0.39 3.50 0.24 1.45 2.04 170.44 0.70
Most likely 0.91 0.41 1.58 0.66 1.47 0.58 66.49 0.91

Five-outcome gambles
Minimax 0.02 0.04 4.47 0.81 1.79 1.11 49.66 0.93
Maximax 0.05 4.59 0.04 0.89 3.14 0.73 49.80 0.93
Priority 0.06 0.30 1.17 0.52 3.16 1.81 90.42 0.86
Least likely 0.87 1.34 3.58 0.42 2.63 0.48 201.59 0.64
Most likely 0.81 1.03 0.66 0.70 1.74 0.50 78.37 0.90

Note. The DIC assuming random choice was 249.53.
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Appendix C). Specifically, we constructed problem sets with two-, three-, and five-outcome gambles with the constraint that
the ratio of the absolute difference between the options’ EVs to the absolute value of the smaller EV was larger than 1—thus
ensuring they were dissimilar (in the previous simulation, the ratios was smaller than 1). Each set of problems again con-
tained 60 gain, 60 loss, and 60 mixed problems. The ratios of the absolute difference in EVs to the absolute value of the smal-
ler EV ranged from 1.6 to 145.6, 6.5 to 129.3, and 4.7 to 87.9 for the problems with two-, three-, and five-outcome gambles,
respectively. We then determined each heuristic’s choices in each of the three problem sets and estimated CPT’s parameters
for these sets of choices (again using Bayesian parameter estimation).

Table B1 reports CPT’s ability to capture the heuristics’ choices. As shown, the model fit was good for all five heuristics in
all problem sets; in fact, it was better than in the simulation with similar EVs (as indicated by lower DICs and a higher pro-
portion of overlapping choices). In particular, CPT captured the choices generated by the most-likely heuristic much better
than before. One possible explanation is that the most-likely heuristic chose the option with the higher EV in a substantially
larger percentage of problems than in the context of problems with similar EVs (i.e., in 96.7, 93.3, and 94.4% of the choices in
problems with two-, three-, and five-outcome gambles, respectively, relative to 68.9, 67.2, and 67.8% of choices in the con-
text of problems with similar EVs). Most importantly, the resulting parameter patterns were similar to those obtained for the
problems with similar EVs (see Table E1 in Appendix E). For instance, the heuristics that prioritize outcome information
yielded values close to 1 on the a parameter, indicating high outcome sensitivity; heuristics that are risk averse for losses
(gains) resulted in a strongly (weakly) elevated weighting function, whereas heuristics that are risk seeking resulted in a
weak (strong) elevation. We conclude that CPT can veridically capture the processing characteristics of various heuristics,
irrespective of whether the choice problems have options with similar or dissimilar EVs.

Appendix C

C.1. Construction of the choice problems

For the problems with two-outcome gambles, we used a set constructed by Rieskamp (2008; Study 2). The problem
sets with the three-outcome and the five-outcome gambles were designed using the same principles as in Rieskamp’s
study. Specifically, we generated 10,000 pairs of gambles for the gain, loss, and mixed domains, separately for the
three- and the five-outcome problems. The gambles for the mixed problems were constructed such that there were (with
equal probability) either one or two (for three-outcome gambles) or two or three (for five-outcome gambles) gain out-
comes. The outcomes were drawn with equal probability from integers ranging from 0 to 100 for gains and from –100
to 0 for losses. The probabilities for the three-outcome problems were constructed as follows: Two values from the inter-
val 0 to 1 were selected randomly, dividing the interval into three sections. The smallest value constituted the first prob-
ability, the difference between the smallest value and the second value constituted the second probability, and the
difference between the second value and 1 constituted the third probability. For illustration, we randomly selected two
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values from the interval 0 to 1—for instance, 0.25 and 0.55—to construct probabilities for three-outcome gambles. The
smallest value constituted the first probability—in this example, 0.25. The difference between the smallest value (0.25)
and the second value (0.55), or 0.3, constituted the second probability. The difference between the second value (0.55)
and 1, or 0.45, constituted the third probability. The three resulting probabilities—0.25, 0.3, and 0.45—sum to 1. The prob-
abilities for the five-outcome problems were constructed using the same principle (i.e., based on four values randomly
selected from the interval 0 to 1).

Problems in which one gamble stochastically dominated the other were eliminated. Specifically, following Rieskamp
(2008), we eliminated those problems for which the ratio of the absolute difference of the gambles’ EVs to the absolute value
of the gamble with the smaller expected value was larger than 1. From the remaining problems, 60 were selected randomly
for each problem set (i.e., gain, loss, and mixed problems), for both the problems with three- and the problems with five-
outcome gambles. (As noted in the main text, some problem sets had additional criteria.)

Appendix D

D.1. Estimation of CPT parameters

To determine from CPT’s predicted valuations of options A and B a probability of choosing option A over option B, p(A, B),
we applied the softmax choice rule (e.g., Sutton & Barto, 1998):
pðA;BÞ ¼ eu�VðAÞ

eu�VðAÞ þ eu�VðBÞ ; ðD1Þ
where V(A) and V(B) represent the predicted subjective valuations. The parameter u > 0 governs how sensitively the model
reacts to differences between V(A) and V(B), with higher values indicating higher sensitivity (at u = 0, choices are random).
Importantly, note that the value of u is also sensitive to the magnitude of the valuations V: Because u also serves to map the
differences in the options’ valuations onto a scale from 0 to 1, when the Vs and differences between them are large (e.g., due
to high values of a), the choice probability for an option can be high even with rather low values of u (for a discussion, see
Scheibehenne & Pachur, 2015).

We used a Bayesian approach to estimate the CPT parameters for the choices produced by the different heuristics (Nilsson
et al., 2011; Scheibehenne & Pachur, 2015). Bayesian parameter estimation yields, based on prior distributions, posterior dis-
tributions of parameter values that are informed by the data; the distributions are characterized by a central tendency and a
dispersion. The dispersion of the posterior distribution indicates the uncertainty in the estimate (the larger the dispersion,
the higher the uncertainty). The prior distributions for the parameters were set to uniform probability distributions spanning
a reasonable range that excluded theoretically impossible values but included parameter values found in previous research.
Specifically, in the main analyses the ranges were 0–1 for a and c, 1–5 for k, and 0–5 for d+, d–, and u. The posterior parameter
distributions were estimated using Monte Carlo Markov Chain methods implemented in JAGS, a sampler that utilizes a
version of the BUGS programming language (version 3.3.0) called from Matlab. We ran four chains, each with 20,000
recorded samples, which were drawn from the posterior distributions after a burn-in period of 1000 samples. To reduce
autocorrelations during the sampling process, we recorded only every 20th sample (thinning). The sampling procedures
were efficient, as indicated by low autocorrelations of the sample chains, Gelman–Rubin statistics, and visual inspections
of the chain plots.

In the hierarchical estimation approach used in the behavioral experiment (Section 6), the individual-level parameters
were linked to group-level parameters through probit transformations (Scheibehenne & Pachur, 2015), yielding a
distribution ranging from 0 to 1 on the individual level. In order to extend the range of these distributions from 0 to 5 for
d and u, we interposed an additional linear linkage function. All hierarchical group-level means were assumed to be normally
distributed, with a mean of 0 and a variance of 1. The priors on the group-level standard deviations were uniformly dis-
tributed, ranging from 0 to 10 (thus avoiding extreme bimodal distributions on the individual level). The number of chains,
number of recorded samples, and amount of thinning were the same as in the nonhierarchical estimation.

Appendix E

E.1. Parameter estimates obtained when applying CPT to the choices of the heuristics in different environments

See Tables E1–E3.

Appendix F

F.1. Posterior distributions of the parameter estimation

See Fig. F1.



Table E2
CPT parameter estimates for the choices of the priority heuristic in problems with two-outcome gambles, separately for problems where the choice was based
on the top-ranked reason (probability of minimum gain/loss) in 25%, 50%, or 75% of cases, respectively (the choice was otherwise based on the second reason:
the probability of the minimum gain/loss). Also shown are the deviance information criterion (DIC) of CPT and the results of posterior predictive checks (PP)
indicating the proportion of choices in which CPT, based on the posterior distributions of the parameters, generated the same choice as the heuristic.

% decisions based on first reason Parameters DIC PP

c d+ d� a k u

75% 0.30 0.04 0.19 0.91 2.28 0.50 97.96 0.85
50% 0.49 0.06 0.64 0.84 1.72 0.28 167.43 0.71
25% 0.94 0.20 0.56 0.85 1.70 0.35 125.18 0.80

Note. The DIC assuming random choice was 249.53.

Table E3
CPT parameter estimates for the choices of each of the five heuristics in problems with two-, three-, and five-outcome gambles, respectively, with a negative
relationship between outcomes and probabilities. Also shown are the deviance information criterion (DIC) of CPT and the results of posterior predictive checks
(PP), indicating the proportion of choices for which CPT, based on the posterior distributions of the parameters, generated the same choice as the respective
heuristic.

Heuristic Parameters DIC PP

c d+ d� a k u

Two-outcome gambles
Minimax 0.02 0.07 4.55 0.77 1.94 1.08 32.60 0.96
Maximax 0.04 4.69 0.02 0.77 2.77 0.93 51.37 0.93
Priority 0.23 0.15 2.63 0.67 3.37 2.11 18.62 0.98
Least likely 0.90 1.94 1.52 0.01 3.77 4.21 182.61 0.65
Most likely 0.87 0.27 0.08 0.48 2.72 2.87 37.38 0.95

Three-outcome gambles
Minimax 0.09 0.03 4.72 0.83 1.29 1.12 58.66 0.92
Maximax 0.04 4.68 0.02 0.86 2.89 1.74 32.92 0.96
Priority 0.22 0.20 0.63 0.78 1.68 0.63 126.08 0.79
Least likely 0.87 1.73 4.03 0.05 3.12 2.38 221.60 0.58
Most likely 0.56 0.03 0.01 0.69 2.73 3.19 95.54 0.83

Five-outcome gambles
Minimax 0.10 0.07 4.12 0.72 1.14 1.16 117.38 0.83
Maximax 0.06 4.57 0.01 0.87 3.51 1.21 52.96 0.93
Priority 0.25 0.23 0.56 0.78 1.25 0.67 163.75 0.72
Least likely 0.70 2.66 3.27 0.08 2.35 1.45 249.45 0.51
Most likely 0.77 0.07 0.02 0.72 3.27 3.92 73.55 0.87

Note. The DIC assuming random choice was 249.53.

Table E1
CPT parameter estimates for the choices of each of the five heuristics in problems with two-, three-, and five-outcome gambles, respectively, with similar EVs.
Also shown are the deviance information criterion (DIC) of CPT and the results of posterior predictive checks (PP) indicating the proportion of choices for which
CPT, based on the posterior distributions of the parameters, generated the same choice as the respective heuristic.

Heuristic Parameters DIC PP

c d+ d� a k u

Two-outcome gambles
Minimax 0.11 0.04 4.77 0.93 2.48 0.37 65.01 0.91
Maximax 0.10 4.76 0.04 0.90 3.19 0.99 38.68 0.95
Priority 0.17 0.05 0.62 0.82 1.37 0.35 160.58 0.73
Least likely 0.90 2.81 2.89 0.04 3.53 3.95 196.51 0.63
Most likely 0.96 1.72 1.23 0.95 1.29 0.08 226.51 0.59

Three-outcome gambles
Minimax 0.20 0.16 4.12 0.95 1.59 0.15 140.93 0.81
Maximax 0.13 4.68 0.04 0.85 1.24 0.67 89.43 0.87
Priority 0.14 0.18 0.30 0.79 1.90 0.29 181.2 0.70
Least likely 0.92 0.69 3.67 0.22 1.97 1.89 228.27 0.57
Most likely 0.95 0.90 1.81 0.93 1.56 0.09 207.86 0.63

Five-outcome gambles
Minimax 0.02 0.04 4.47 0.81 1.79 1.11 49.66 0.93
Maximax 0.05 4.59 0.04 0.89 3.14 0.73 49.8 0.93
Priority 0.06 0.30 1.17 0.52 3.16 1.81 90.42 0.86
Least likely 0.87 1.34 3.58 0.42 2.63 0.48 201.59 0.64
Most likely 0.81 1.03 0.66 0.70 1.74 0.50 78.37 0.90

Note. The DIC assuming random choice was 249.53.
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Fig. F1. Posterior distribution of the CPT parameter estimates for the choices of each of the five heuristics in problems with two-outcome gambles with
similar EVs. The dots indicate the median of the distribution, the horizontal lines indicate the 95% highest density interval.
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Appendix G. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cog-
psych.2017.01.001.
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